VIBRATION CHARACTERISTICS OF CFRP LAMINATES WITH EMBEDDED SHAPE MEMORY ALLOY FIBERS

Masaki Sato\textsuperscript{1}, Hideki Sekine\textsuperscript{1}, and Yuichi Hayakawa\textsuperscript{1}

\textsuperscript{1}Department of Aeronautics and Space Engineering, Tohoku University
Aramaki Aza Aoba 01, Aoba-ku, Sendai 980-8579, Japan

SUMMARY: The present paper examines vibration characteristics of symmetric CFRP laminates with embedded shape memory alloy fibers for passive vibration control by tailoring laminate configuration. The effect of recovery stresses induced by the embedded SMA fibers is taken into consideration in the free vibration analysis. With the use of two in-plane lamination parameters in addition to four out-of-plane lamination parameters, the shape memory effect on fundamental frequencies is discussed for the case of simply supported edges. The laminate configurations corresponding to six lamination parameters are also obtained by using a mathematical programming method. The results give a feasible region of two in-plane lamination parameters. By using two in-plane lamination parameters as design variables and the obtained feasible region as a constraint, the optimal laminate configurations to maximize the fundamental frequencies at the austenite phase are obtained.

KEYWORDS: Shape memory alloy fiber, Shape memory effect, CFRP, Symmetric laminate, Fundamental frequency, Vibration control, Laminate configuration, Lamination parameter.

INTRODUCTION

It is important to develop smart structures to meet various demands for future aerospace structures. In the development of the smart structures, shape memory alloys (SMA’s) such as Ni-Ti alloys, are useful materials to give the structures numerous adaptive capabilities \cite{1~3}. The SMA exhibits some unique characteristics. One of the most important characteristics is shape memory effect (SME). The SMA can deform plastically at a low-temperature martensite phase and then restore to the original shape by heating it above a proper transition temperature to an austenite phase. The other is the large change in the Young's modulus when the SMA transforms from the martensite phase to the austenite one \cite{4}.

The concept of smart composites using SMA was proposed by Rogers et al \cite{5}. The modeling for SMA reinforced composite plates was shown and the structural control schemes were classified as active properties tuning and active strain energy tuning \cite{6}. In the CFRP laminates with embedded SMA fibers, the recovery stresses induced by SMA fibers increase the vibration frequencies at the austenite phase \cite{6,7}. Thus the vibration characteristics can be controlled by activating the embedded SMA fibers as actuators. In the vibration control of the laminates, not only active vibration control by activating the embedded SMA fibers but also passive vibration control by tailoring layer angles and layer thicknesses is important. The
laminates can be designed to have the most effective capability to increasing fundamental frequencies by passive vibration control.

In the design of composite laminates by tailoring laminate configuration, the lamination parameters are useful design variables [8,9]. Thus the present paper examines the vibration characteristics of symmetric CFRP laminates with embedded SMA fibers on the concept of lamination parameters. The SME on the fundamental frequencies has been investigated by using two in-plane lamination parameters in addition to four out-of-plane lamination parameters. Since the relationship among six lamination parameters have not been established so far, a mathematical programming method is applied to obtain the laminate configurations corresponding to six lamination parameters. The present paper also applies a mathematical programming method to obtain laminate configurations maximizing the fundamental frequencies at the austenite phase for passive vibration control.

**FUNDAMENTAL EQUATIONS**

**Model of CFRP Laminates with Embedded SMA Fibers**

Figure 1 shows the model of the symmetric CFRP laminates with embedded SMA fibers. As shown in Fig. 1(a), the SMA fibers are embedded uniformly along the carbon fibers in each CFRP lamina with the volume fraction $V_f$. The material properties of this lamina can be expressed as follows, by using the rule-of-mixture:

$$E_1 = E_{m1}(1-V_f) + E_f V_f$$
$$E_2 = \frac{E_{m2}E_f}{E_{m2}V_f + E_f(1-V_f)}$$
$$G_{12} = \frac{G_{m12}G_f}{G_{m12}V_f + G_f(1-V_f)}$$
$$\nu_{12} = \nu_{m12}(1-V_f) + \nu_f V_f$$
$$\rho = \rho_{m}(1-V_f) + \rho_f V_f$$

where subscripts “ $m$ ” and “ $f$ ”, respectively, denote the CFRP and the SMA fiber, while “ 1 ” and “ 2 ”, respectively, denote the direction of the fiber and the transverse direction to the fiber.
In the present lamina model shown in Fig. 1(a), we assume that the SMA fibers with initial plastic strain are embedded in each CFRP lamina. When any in-plane deformations of the lamina are restrained by the boundary condition at four edges, the embedded SMA fibers induce the recovery stresses along the fiber direction in the lamina. The induced recovery stresses in the lamina with layer angle $\Theta$ can be expressed as follows:

$$
\begin{bmatrix}
\sigma_{x}^R \\
\sigma_{y}^R \\
\sigma_{xy}^R
\end{bmatrix} =
\begin{bmatrix}
cos^2 \Theta & \sin^2 \Theta & -2 \sin \Theta \cos \Theta \\
\sin^2 \Theta & \cos^2 \Theta & 2 \sin \Theta \cos \Theta \\
\sin \Theta \cos \Theta & -\sin \Theta \cos \Theta & \sin^2 \Theta
\end{bmatrix}
\begin{bmatrix}
\sigma_{Vf}^R
\end{bmatrix}
\begin{bmatrix}
0
\end{bmatrix}
$$

(2)

where $\sigma^R$ denotes the recovery stress of the SMA fiber. The directions shown in Fig. 1(b) represent the positive directions.

**Lamination Parameters**

In the classical laminate plate theory, the governing equation for free vibration of symmetric CFRP laminates with embedded SMA fibers, as shown in Fig. 1(b), is

$$
D_{11} \frac{\partial^4 w}{\partial x^4} + 4D_{16} \frac{\partial^4 w}{\partial x \partial y^3} + 2\left( D_{12} + 2D_{66} \right) \frac{\partial^4 w}{\partial x^2 \partial y^2} + 4D_{26} \frac{\partial^4 w}{\partial y^4} + D_{22} \frac{\partial^4 w}{\partial y^2} - N^R_x \frac{\partial^2 w}{\partial x^2} - N^R_y \frac{\partial^2 w}{\partial y^2} - 2N^R_{xy} \frac{\partial^2 w}{\partial x \partial y} = \rho h \omega^2 w
$$

(3)

where $w$, $\rho$, $h$, and $\omega$ denote the deflection, density and thickness of the plate and the circular frequency, respectively. Introducing stiffness invariants $U_i$ and lamination parameters $\xi_i$, the out-of-plane stiffnesses can be expressed as follows [10]:

$$
\begin{bmatrix}
D_{11} \\
D_{22} \\
D_{12} \\
D_{66} \\
D_{16} \\
D_{26}
\end{bmatrix} =
\begin{bmatrix}
1 & \xi_0 & \xi_{x0} & 0 & 0 \\
1 & -\xi_0 & \xi_{x0} & 0 & 0 \\
0 & 0 & -\xi_{x0} & 1 & 0 \\
0 & 0 & -\xi_{x0} & 0 & 1 \\
0 & \xi_{x1}/2 & \xi_{x2} & 0 & 0 \\
0 & \xi_{x1}/2 & -\xi_{x12} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
U_1 \\
U_2 \\
U_3 \\
U_4 \\
U_5
\end{bmatrix}
$$

(4)

The recovery stress resultants can be written as follows:

$$
\begin{bmatrix}
N^R_x \\
N^R_y \\
N^R_{xy}
\end{bmatrix} = h \int_0^1 \begin{bmatrix}
\sigma^R_x \\
\sigma^R_y \\
\sigma^R_{xy}
\end{bmatrix} \, du = \frac{h}{2} \sigma_{Vf} \begin{bmatrix}
1 + \xi_0 \\
1 - \xi_0 \\
\xi_{x1}/2
\end{bmatrix}
$$

(5)

It should be noted that the recovery stress resultants are only related to SME. If the embedded SMA fibers are not activated, SME has no contribution to the recovery stress resultants, because $\sigma^R=0$ at the martensite phase. Lamination parameters are written as follows, with a symmetric condition at the mid-plane:

$$
(\xi_0, \xi_{x1}, \xi_{x2}, \xi_{x3}) = \int_0^1 (\cos 2\Theta, \cos 4\Theta, \sin 2\Theta, \sin 4\Theta) \, du
$$

(6)

$$
(\xi_0, \xi_{x0}, \xi_{x1}, \xi_{x12}) = 3 \int_0^1 (\cos 2\Theta, \cos 4\Theta, \sin 2\Theta, \sin 4\Theta) u^2 \, du
$$

(7)
where $\Theta(u)$ is a distribution function of fiber orientation angles through the thickness and $u(=2z/h)$ is a non-dimensional thickness. When the layer angle distribution is specified through the thickness, the lamination parameters can be determined uniquely. In Eqns 6 and 7, $(\xi_1,\xi_2,\xi_3,\xi_4)$ and $(\xi_9,\xi_{10},\xi_{11},\xi_{12})$ represent the in-plane and the out-of-plane lamination parameters, respectively.

From Eqns 3, 4 and 5, the vibration characteristics at the austenite phase are governed by six lamination parameters $(\xi_1,\xi_3,\xi_9,\xi_{10},\xi_{11},\xi_{12})$ with taking the recovery stress resultants into consideration. On the contrary, the vibration characteristics at the martensite phase are governed by only four lamination parameters $(\xi_9,\xi_{10},\xi_{11},\xi_{12})$. It is known that the lamination parameters are not independent. The relationship among the four in-plane or the four out-of-plane lamination parameters was obtained in Ref. 8. In Ref. 9, a method to determine the laminate configurations from the specified in-plane or out-of-plane lamination parameters is also suggested. But the relationship among the six lamination parameters $(\xi_1,\xi_3,\xi_9,\xi_{10},\xi_{11},\xi_{12})$ has not been established. Thus the method to determine the laminate configurations corresponding to six lamination parameters has not been provided yet.

**Vibration Analysis**

We examine the fundamental frequencies of the CFRP laminates with embedded SMA fibers as shown in Fig. 1. The laminate is simply supported at four edges. The boundary conditions for simply supported edges are expressed as follows:

$$
x = 0, a ; \quad w = D_{11} \frac{\partial^2 w}{\partial x^2} + D_{12} \frac{\partial^2 w}{\partial y^2} + 2D_{10} \frac{\partial^2 w}{\partial x \partial y} = 0
$$

$$
y = 0, b ; \quad w = D_{12} \frac{\partial^2 w}{\partial x^2} + D_{22} \frac{\partial^2 w}{\partial y^2} + 2D_{26} \frac{\partial^2 w}{\partial x \partial y} = 0
$$

The following deflection function is assumed:

$$w(x, y) = \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}
$$

The deflection function does not satisfy the natural boundary condition, and hence, we use the Rayleigh-Ritz method. Applying the Rayleigh-Ritz method, we can obtain a eigenvalue equation. The second power of fundamental frequency is given as the positive lowest eigenvalue. The fundamental frequency is normalized as follows:

$$\bar{\omega}^2 = \frac{12h^4 \rho_m}{\pi^4 Q_{m22} h^2} - \omega^2 - \omega^2
$$

where $Q_{m22}$ is the reduced stiffness transverse to the fiber. The increasing rate of normalized vibration frequencies is defined as follows:

$$\Delta \bar{\omega} = \frac{\bar{\omega}_m - \bar{\omega}_a}{\bar{\omega}_a} \times 100 \%$$

where $\bar{\omega}_m$ and $\bar{\omega}_a$ denote the normalized fundamental frequencies at the martensite phase and at the austenite phase, respectively.
SHAPE MEMORY EFFECT ON VIBRATION CHARACTERISTICS

As a numerical example, we consider graphite/epoxy composites as the CFRP and Ni-Ti alloys as the embedded SMA fibers. The material properties of graphite/epoxy composites are

\[ E_{m1} = 148.0 \text{ GPa}, \quad E_{m2} = 10.8 \text{ GPa}, \quad G_{m12} = 5.49 \text{ GPa}, \quad \nu_{m12} = 0.3. \quad (12) \]

The material properties of Ni-Ti alloys [4] are

- at martensite phase: \( E_f = 27.6 \text{ GPa}, \quad G_f = 10.4 \text{ GPa}, \quad \nu_f = 0.33, \quad \sigma^e = 0.0 \text{ GPa} \)
- at austenite phase: \( E_f = 82.7 \text{ GPa}, \quad G_f = 31.1 \text{ GPa}, \quad \nu_f = 0.33, \quad \sigma^e = 0.138 \text{ GPa} \)

and the volume fraction of the SMA fiber is assumed as \( V_f = 0.15 \).

Figure 2 shows the contours of the increasing rates of normalized fundamental frequencies \( \Delta \tilde{\omega} \) on the in-plane lamination parameters plane \( \xi_1, \xi_3 \) within the region of \( \xi_1^2 + \xi_3^2 \leq 1 \). In Figs. 2(a), 2(b) and 2(c), the contours are shown for the case of \( (\xi_0, \xi_1, \xi_2) = (0, -1, 0, 0) \), \( (0, 0, 0, 0) \) and \( (0, 1, 0, 0) \). Those out-of-plane lamination parameters define the out-of-plane stiffnesses of the \( \pm 45^\circ \) angle-ply laminates, the isotropic laminates and the \( 0^\circ / 90^\circ \) cross-ply laminates, respectively, and \( \xi_1^2 + \xi_3^2 \leq 1 \) shows the feasible region of \( (\xi_1, \xi_3) \) without no contribution of \( (\xi_0, \xi_1, \xi_2) \) [8]. The aspect ratio of the laminate is \( a/b = 1 \). From those figures we can know the SME on the fundamental frequencies. In any figures, the fundamental frequencies at the austenite are increased by SME compared with those at the martensite phase. The maximum \( \Delta \tilde{\omega} \) appears on the \( \xi_1 \)-axis. It means that the fundamental frequencies at the austenite phase are most increased when the recovery stress resultants condition is \( N_{xy} = 0 \). It can be also known the increasing rates of the normalized fundamental frequencies of the cross-ply laminates are highest among the three laminates.

DETERMINATION OF LAMINATE CONFIGURATIONS CORRESPONDING TO SIX LAMINATION PARAMETERS

When we discuss the vibration characteristics of the CFRP laminate with embedded SMA fibers with use of six lamination parameters, we need determine the corresponding laminate configurations. In this section, we will obtain the laminate configurations corresponding to six lamination parameters by using a mathematical programming method.
Problem Formulation

We consider the following optimization problem to obtain the laminate configurations corresponding to specified six lamination parameters $\xi_i$. The optimization problem can be stated as follows:

$$
\minimize \quad \Delta \xi = \sum_{i=1,3,9-12} W_i (\xi_i^* - \xi_i)^2 \\
\text{design variables} \quad \Theta_k, h_k (k = 1 \sim N)
$$

(14)

where $\xi_i^*$ denote the lamination parameters realized by $2N$-layered symmetric laminates consisted of layer angles $\Theta$ and layer thicknesses $h_k$, and $W_i$ denotes the weight function. When the layer angles $\Theta$ and the layer thicknesses $h_k$ that give zero to the value of $\Delta \xi$ are obtained, the laminate configurations corresponding to specified six lamination parameters are realized. As an optimizer, the BFGS method was adopted with the golden section method in ADS program [11].

Numerical Results and Discussions

As an numerical example, three sets of specified lamination parameters are used to obtain the corresponding laminate configurations: case 1, $(\xi_1, \xi_3, \xi_9, \xi_{10}, \xi_{11}, \xi_{12})=(0,0,0,-1,0,0)$; case 2, $(\xi_1, \xi_3, \xi_9, \xi_{10}, \xi_{11}, \xi_{12})=(0,0.5,0,-1,0,0)$; case 3, $(\xi_1, \xi_3, \xi_9, \xi_{10}, \xi_{11}, \xi_{12})=(0,1,0,-1,0,0)$. Those sets of lamination parameters are corresponding to the points on the $\xi_1$-axis in Fig. 2(a), which give the maximum $\Delta \xi$. In the optimization, the weight function is $W_i=1$ and one thousand sets of initial values generated by a random number generator are used to obtain the reliable results.

Table 1 shows the optimal results for case 1. The minimized values of $\Delta \xi$ are shown for the $2N$-layered symmetric laminates. The laminate configurations to minimize $\Delta \xi$ and realized lamination parameters $\xi_i^*$ by the $2N$-layered symmetric laminates are also shown in Table 1. When the number of layers is $2N=2$ or 4, the minimized value of $\Delta \xi$ is not zero and the obtained laminate configurations can not realize the specified six lamination parameters. On the contrary, the obtained laminate configurations for $2N=6$ and 8 can realize the specified six lamination parameters with the values of $\Delta \xi=0$.

Table 1: Optimal laminate configurations to minimize $\Delta \xi$ for $(\xi_1, \xi_3, \xi_9, \xi_{10}, \xi_{11}, \xi_{12})=(0,0,0,-1,0,0)$

<table>
<thead>
<tr>
<th>$2N$</th>
<th>$\Delta \xi$</th>
<th>Laminate configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.0000</td>
<td>$[45.0^\circ_{-1.00}]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00 -1.00 0.00 -1.00 0.00$</td>
</tr>
<tr>
<td>4</td>
<td>0.2571</td>
<td>$[45.0^\circ_{-0.42}/-45.0^\circ_{0.29}]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00 -0.42 0.00 -1.00 0.29 0.00$</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>$[45.0^\circ_{-0.10}/-45.0^\circ_{0.50}/45.0^\circ_{0.31}]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00 0.00 0.00 -1.00 0.00 0.00$</td>
</tr>
<tr>
<td>8</td>
<td>0.0000</td>
<td>$[45.2^\circ_{-0.20}/45.0^\circ_{0.29}/44.8^\circ_{0.40}/-45.3^\circ_{0.23}]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.00 0.00 0.00 -1.00 0.00 0.00$</td>
</tr>
</tbody>
</table>

Fig.3: Convergence behavior of $\Delta \xi$
Figure 3 shows the convergence behavior of $\Delta_{2N}$ with the number of layers $2N$. In case 1, the values of $\Delta_{2N}$ are converged to zero when the number of layers $2N$ is more than 6. On the contrary, the values of $\Delta_{2N}$ do not become zero in case 2 and case 3. Thus the specified lamination parameters in case 1 are realized by the symmetric laminates consist of more than 6 layers, while the specified laminate parameters in case 2 and case 3 can not be realized even if the 20-layered symmetric laminates are used.

Fig. 4: Contours of $\Delta_{2N}$ on $\xi_1$-$\xi_3$ plane for $(\xi_9,\xi_{10},\xi_{11},\xi_{12})=(0, -1, 0, 0)$

Fig. 5: Contours of $\Delta_{2N}$ on $\xi_1$-$\xi_3$ plane for $(\xi_9,\xi_{10},\xi_{11},\xi_{12})=(0, 0, 0, 0)$

Fig. 6: Contours of $\Delta_{2N}$ on $\xi_1$-$\xi_3$ plane for $(\xi_9,\xi_{10},\xi_{11},\xi_{12})=(0, 1, 0, 0)$
Figures 4, 5 and 6 show the contours of $\Delta \xi$ on the in-plane lamination parameters plane $\xi_1-\xi_3$ for the specified out-of-plane lamination parameters. In Fig. 4, Fig. 5 and Fig. 6, the contours are shown for $(\xi_9, \xi_{10}, \xi_{11}, \xi_{12})=(0,-1,0,0), (0,0,0,0)$ and $(0,1,0,0)$, respectively. Here, the number of layers is considered for the case of $2N=6, 8$ and $20$. From those figures, we can know the feasible region of $(\xi_1, \xi_3)$ for the specified $(\xi_9, \xi_{10}, \xi_{11}, \xi_{12})$. The feasible regions with taking the contribution of $(\xi_9, \xi_{10}, \xi_{11}, \xi_{12})$ into consideration are much limited than $\xi_9^2 + \xi_3^2 \leq 1$. Comparing Fig. 4, 5 and 6, it is known that the feasible regions are depend on the specified $(\xi_9, \xi_{10}, \xi_{11}, \xi_{12})$. It can be also seen that the feasible regions are depend on the number of layers and the 8-layered symmetric laminates are enough to express the maximum feasible regions.

**OPTIMIZATION OF VIBRATION CHARACTERISTICS**

In this section, we will obtain the laminate configurations to maximize the fundamental frequencies at the austenite phase by using a mathematical programming method.

**Problem Formulation**

We consider an optimal design of the CFRP laminates with embedded SMA fibers that will provide the maximum fundamental frequencies at the austenite phase. Two in-plane lamination parameters $\xi_1$ and $\xi_3$ are used as design variables. Since the positive feasible region of $(\xi_1, \xi_3)$ has not been provided, the mathematical results obtained in the former section are used as a constraint.

The optimization problem can be stated as follows when the fundamental frequencies at martensite phase are defined by specified four out-of-plane lamination parameters:

$$\begin{align*}
\text{maximize} & \quad \Delta \mathbf{D}(\xi_1, \xi_3) \\
\text{design variables} & \quad \xi_1, \xi_3 \\
\text{subject to} & \quad \Delta \xi = 0
\end{align*}$$

where $\Delta \xi=0$ denotes the feasible regions of $(\xi_1, \xi_3)$ for the specified $(\xi_9, \xi_{10}, \xi_{11}, \xi_{12})$. As an optimizer, the modified feasible direction method was adopted with the golden section method in the ADS program [11].

In the optimization procedure, we will solve two optimization problems. One is the optimization problem to maximize $\Delta \mathbf{D}$ and another is optimization problem to minimize $\Delta \xi$. The optimization problem to minimize $\Delta \xi$ is solved as an auxiliary problem to obtain the information about the feasible region of in-plane lamination parameters. By linking the auxiliary optimization problems, we can solve the principal optimization problem stated in Eqn 15.

**Numerical Results and Discussions**

As a numerical example, the material properties specified in Eqns 12 and 13 are used. A laminate is simply supported at four edges. The aspect ratio of the laminate is $a/b=1$.

The effect of initial design variables on the optimal results have also been examined. The four sets of in-plane lamination parameters $(\xi_1, \xi_3)$ were used as initial design variables: $(\xi_1, \xi_3)= (1.0,0.0), (-1.0,0.0), (0,0,1.0)$ and $(0,0,-1.0)$.
The optimal results for the case of \((\xi_9, \xi_{10}, \xi_{11}, \xi_{12})=(0, -1, 0, 0), (0, 0, 0, 0)\) and \((0, 1, 0, 0)\) are shown in Table 2. The numbers of layers are considered for the case of \(2N=6, 8\) and \(20\). In any case, the optimal \(\Delta \bar{\omega}\) converged to almost the same values with the constraint \(\Delta \xi=0\) independently of the initial in-plane lamination parameters. The appropriateness of the obtained optimal results is also confirmed by Fig. 2 and Figs. 4–6. Thus the present optimization approach with linking the auxiliary optimization problems is useful to solve the optimal problem with the unknown constraint. The laminate configurations corresponding to the optimal lamination parameters are shown in Table 3. In general, there exist an infinite number of laminate configurations to the same lamination parameters, since the stacking sequence of the laminate can vary arbitrary. An example of laminate configurations is shown for 6-layered symmetric laminates.

**CONCLUSIONS**

The SME on the fundamental frequencies has been investigated by using six lamination parameters for the symmetric CFRP laminates with embedded SMA fibers. It has been shown that the fundamental frequencies at the austenite phase are increased by SME of embedded SMA fibers. By representing the increasing rates of the normalized fundamental frequencies on the in-plane lamination parameters plane, the most effective recovery stress resultants conditions are clarified. The laminate configurations corresponding to six lamination parameters are obtained by a mathematical programming method. The results gives us not only the laminate configurations but also the feasible region of \((\xi_9, \xi_{10}, \xi_{11}, \xi_{12})\), which has not been known so far. When the specified \((\xi_9, \xi_{10}, \xi_{11}, \xi_{12})\) is taken into consideration, the feasible regions of \((\xi_9, \xi_{11})\) are much limited compared with those leaving them out of consideration. The optimal laminate configurations to maximize the

<table>
<thead>
<tr>
<th>Specified out-of-plane lamination parameters</th>
<th>2(N)</th>
<th>Optimal in-plane lamination parameters</th>
<th>(\Delta \xi)</th>
<th>(\Delta \bar{\omega})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>6</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>0.00</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>0.00</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>-0.03</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>-0.54</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>-0.17</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lamination parameters</th>
<th>Optimal laminate configurations (2(N=6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_9) (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>([-45.0^\circ, 0.19] / [45.0^\circ, 0.31] / -45.0^\circ, 0.31]_S</td>
</tr>
<tr>
<td>-0.54 (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>([-27.5^\circ, 0.13] / [32.4^\circ, 0.18] / -87.5^\circ, 0.69]_S</td>
</tr>
<tr>
<td>0.00 (\xi_{10}) (\xi_{11}) (\xi_{12})</td>
<td>([0.0^\circ, 0.19] / [90.0^\circ, 0.50] / 0.0^\circ, 0.31]_S</td>
</tr>
</tbody>
</table>
fundamental frequencies at the austenite phase are also obtained by using a mathematical
programming method. In the optimization, an auxiliary optimization problem is linked to
obtain the feasible regions of \((\xi_1, \xi_3)\). The present optimization approach is useful for the
optimization problems with unknown constraint. Since the optimal laminate configurations
obtained by this approach have the most effective capability to maximize the fundamental
frequencies at austenite phase, they are useful laminate configurations for passive vibration
control.

REFERENCES

1. Fuller, C. R., Rogers, C. A. and Robertshaw, H. H., “Control of Sound Radiation With
39.

224-227.

3. Choi, S. and Lee, J. J., “The Shape Control of Composite Beam With Embedded Shape


5. Rogers, C. A., Liang, C. and Jia, J., “Behavior of Shape Memory Alloy Reinforced
Composite Plates Part I: Model Formulations and Control Concepts”, *American Institute of

Composite Plates Part II: Results”, *American Institute of Aeronautics and Astronautics Paper

7. Epps, J. and Chandra, R., “Shape Memory Alloy Actuation for Active Tuning of

Lamination Parameters”, *American Institute of Aeronautics and Astronautics Journal*, Vol. 30,
No. 11, 1992, pp. 2791-2793.

Laminates with Extension-Shear or Bending-Twisting Coupling”, *Journal of Composite

10. Tsai, S. W. and Hahn, H. T., *Introduction to Composite Materials*, Technomic, Lancaster,
PA, 1980