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SUMMARY: Dynamic response of axisymmetric cross-ply laminated deep and shallow
panels subjected to asymmetric load based on three-dimensional elasticity equations are
studied. The shell panel is simply supported at four sides and has finite length. The highly
coupled partial differential equations (p.d.e.) are reduced to ordinary differential equations
(o.d.e.) with constant coefficients for shallow shell panel and variable coefficients for deep
panel by means of trigonometric function expansion in circumferential and axial directions.
The resulting ordinary differential equation is solved by Galerkin finite element method.
Numerical examples are presented for (0/90)and (0/90/0 ) laminations under dynamic

loading ,and the results of deep and shallow panels are compared with each other
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INTRODUCTION

Cylindrical panels composed of advanced homogeneous or laminated composite materials are
being increasingly used in the engineering and especially the aerospace industry. The use of
high-modulus low-density materials such as fiber reinforced plastics in modern day structures
demands an accurate analysis of such structures. It is well known that these materials are
anisotropic in nature. However, due to complicated effects, such as a strong influence of
transverse shear and transverse normal deformation, bending-extensional coupling due either
to nonzero curvature or to lamination, the dynamic behavior of such advanced structural
elements is considerably more complicated than that for the corresponding isotropic cases.
Hence accurate prediction of their dynamic response often requires analysis, which are based
on three-dimensional modeling. There are not many solutions for laminated cylindrical panel
based on three-dimensional elasticity, because of the considerable mathematical difficulties in
solving governing differential equations for the general boundary and loading conditions.

An exact solution for static response of laminated cylindrical panel with infinite length
subjected to asymmetric loading and simply supported boundary conditions has been
presented (REN) [1]. In this paper the plane strain assumption is made and the equilibrium

equations are solved with introducing an appropriate stress function. Static analysis of simply-



supported and cross-ply laminated cylindrical panel with finite length was also presented by
the above author[2]. Displacements and stresses of the solution are expressed in terms of
Fourier and power series. Free vibration analysis of doubly curved shallow shells on
rectangular platform using three-dimensional elasticity theory was studied ( Bhimaraddi) [3].
In this paper the governing partial differential equations is reduced to ordinary differential
equations by assuming the solution in the axial and circumferential directions, to be composed
of trigonometric function and then solved the resulting equation. An exact three-dimensional
thermo elasticity solution for a cross-ply cylindrical panel was obtained (Huang and Tauchert)
[4] using the power series method. Three-dimensional elasticity solution for static response of
simply supported orthotropic cylindrical shells was presented (Bhimaraddi and
Chandrashekhara ) [5]. In this paper solution is obtained by utilizing the assumption that the
ratio of the panel thickness to its middle surface radius is negligible as compared to unity. It is
shown that the two dimensional shell theories are very inaccurate when the thickness to length
ratio of the panel is more than 1/20. Three-dimensional elasticity solution for static response
of orthotropic doubly curved shallow shells on rectangular platform was studied
( Bhimaraddi ) [6]. He obtained the static response such as displacements and stresses in X , y
and z directions by assuming the variables in the form of the trigonometric functions
expansion. The exact three-dimensional elasticity solution for infinitely long, arbitrarily
laminated, anisotropic cylindrical panels with simply supported boundary condition under
transverse loading was established (Hung and Kuan ) [7] using power series method.
Review of the published literature shows that elasticity solution to the problem of laminated,
cross-ply cylindrical panel of finite length under dynamic load has not yet been investigated.
Recently the authors have studied the response of closed cylindrical shells and panels with
infinite length under dynamic loading , using the elasticity solution (Shakeri ) [8,9].

In this paper the dynamic response of axisymmetric cross-ply laminated panels subjected
to asymmetric loading based on three-dimensional elasticity equations are studied.

PROBLEM DESCRIPTION
Consider a laminated circular cylindrical panel, as shown in Figure (1), composed of N
uniformly thick layers. The layers of the panel are oriented such that the material axes of
any layer are aligned with the r,0 and z directions, so that the panel is laminated
orthotropic. The panel is simply supported on the edges. The constitutive equations of each

layer are stated as;
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where:



0,(i=r0,z) , €(i=r0,z) Arethe normal stresses and

strains

T6:T.T.6 5> Yo Yoo Ve are the shear
stresses and strians
and

C,(i,j=12,3,4,5,6) are the elastic
constants

Fig.1 Geometry and the coordinate system of laminated panel

NON-SHALLOW PANEL
The governing equations of three-dimensional boundary value problem in deep cylindrical

panels are as;
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U,.,U,, U, are the displacements respectively in the .6,z directions.

Strain-displacement relations are expressed as;
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After substitution equations (1) and (3) into equation (2), the governing equations of motion

in terms of displacements for each layer of cylinderical panel becomes:
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SHALLOW PANEL
The equations of motion based on three-dimensional elasticity theory for shallow cylindrical

panels are:
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Where;
R is the midradius.
Strain-displacement relations of the 3-D elasticity equations in the cylindrical coordinate

system are written as :
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Substituting the stress-strain relations (1),via strain-displacement relations (6) , the

governing equations (5) can be written in terms of three displacements as :
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BOUNDARY CONDITIONS
The simply supported boundary conditions are taken as:
U =0,=1, =0 at 6=0 , @
®)
U =0,=1,4=0 at

Zz=0 , 1

For a laminate consisting of N laminae, the continuity conditions to be enforced at any

arbitrary interior (k)th interface can be written as:
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The boundary conditions on the inner and outer surfaces of the panel are:

r = p(ea t) s Tzr = Tre =0 at the
outer surface (10-a)
0-r = Tzr =T 0 = 0

at the inner surface (10-b)

SOLUTION OF THE GOVERNING EQUATIONS
The solution which satisfies the boundary conditions (8) is:
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After substituting equation (11) into equations (4) and (7) the p.d.e. reduces to o.d.e. , and
applying the formal Galerkin method to the governing o.d.e., results into the following

dynamic finite element equilibrium equation for each non boundary element;
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where:

[M] and [K] are the constant matrices of 6x6
{F(t)} is the force matrix of 6x1

Driving equation (9-a) in term of displacements and expressing the derivatives in backward

and forward finite differences for (k)th and (k+1)th layer respectively we can obtain U,

Uy and U, interm of the displacement values of neighbouring nodes as follows;
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where:
Ufkl ,ngl ,Ulz(kI Is the displacement at ( kI)th node of (k)th element

and

A, B, ...,F" are constant coefficients.

The dynamic finite element equilibrium equations for two neighbouring elements at interior
(k)th and (k+1)th interfaces become;
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By applying equation (13) for the first and last nodes, displacement values for these nodes can
be obtained, and then from equation (12) the dynamic equations for the first and last element
becomes:
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By assembling equations (12), (14-a,b), (15-a,b), the general dynamic finite element
equilibrium equation is obtained as:

M+ K1 { F (16)
where:

[M] and [K] are matrices of (3MI-6-3N)x(3MI -6 -3N) sizes.

MI  is the number of elements

N is the number of layers

Once the finite element equilibrium is established, the Newmark direct integration method

with suitable time step is used and the equations are solved.



NUMERICAL RESULTS AND DISCUSSION

Two and three-layered cross-ply cylindrical panels which their sequence lay-up are ( 0 /
90 ) and ( 0 / 90 / 0) composed of graphite-epoxy is considered. The forcing function is

chosen as:

p(6,z,t) = P,(1—e™'"")sin_Bsinp, z (17)
where :
nTt
Pn = L 5 Bm -
The material properties are;

E =8 Mpa E, =2125Mpa G,; =10625 Mpa G, =0425 Mpa
Vi =V =025 p =1408 (kg/m?)

The numerical results are described in the form of maximum nondimensional displacements
and stresses as follow;
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The time history of in-plane shear stress (T:6) is shown in Figs. 2 The boundary and
interlaminar conditions are satisfied in Fig. 2.With increasing the time , these stresses are
proportionally increasing until reaching the peak time in loading function.

The variations of radial displacement in midradius ([_L )with S for (0/90) lamination

is shown in Fig.3. As it is shown in figure, with increasing S the radial displacement
decreases fastly for S up to almost 40 and then flatten-out. From Fig.3 it is also concluded that
for smaller S, the error of shallow panel theory is considerable.

The span angle (@) is chosen as a suitable parameter in literature to find the ranges in

which the shallow-shell and panel theories are acceptable. To find the suitable span angle, the

changes of radial normal stress (O ) and in-plane shear stress (T:o) through thickness are
found for shallow and non-shallow panels and compared. These results for @=90, 30 and 20
degs. are shown in Figs. 4 to 11 For = 20 deg. the results are exactly the same, for @= 30

deg. the deviations are negligible, but for 90 deg. the maximum deviations increase up to 50
percent. The results show that for @ <30 deg. the simplified shallow-panel formulations give

acceptable results and can be used instead of more sophisticated non-shallow formulations.
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