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SUMMARY: This paper presents a novel adhesive element that consists of two shell 
elements and one degenerated brick element.  The element is formulated based on the 
assumption that only three out-of-plane strains, i.e., through-thickness normal and shear 
strains, are non-zero and constant across the adhesive layer.  In this formulation, the adhesive 
thickness is assumed to be non-uniform.  Illustrative numerical examples are presented to 
investigate the effect of non-uniform adhesive thickness on stress distributions of non-
uniformly bonded and curved joints. 
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INTRODUCTION 
 
Adhesive bonding has been widely used as an effective technique to join structural 
components, in which applied load is transferred via the adhesive layer from one structural 
member to another one.  When applying this technique to practical problems, one needs to 
consider many aspects, such as stress analysis, static and fatigue strength, surface preparation, 
selection of adhesives, durability, etc.  One important aspect in the design of a bonded joint is 
an accurate tool of predicting stresses, stress intensity factors and failure strength. There 
exists a large amount of information on stress analysis of the bonded joints in the literature, 
and most of the currently available analysis methods for bonded joint designs are limited to 
flat plate geometries [1].  However, in addition to flat panels, curved panels or shell-type 
structures are often used in the design of metallic and composite structures, especially in 
aircraft and aerospace structures, such as fuselage and wing skins. Comparing to the 
knowledge of bonded joints to flat panels, current knowledge on the effect of curvature(s) on 
the performance and durability of bonded joints is extremely limited. This paper aims to 
develop an accurate and simple tool for determining stresses in adhesive layer. 
 
Stresses in adhesive layer can be determined following two types of solution procedures, 
namely, analytical and numerical analysis procedures.  In the analytical procedure, closed-
form solutions for stresses may be obtained via introducing a number of assumptions, while in 
the numerical analysis procedure, finite element method is frequently used.  In general, 
analytical solutions are limited to simple geometrical configurations and material properties, 
while finite element method is more versatile in terms of geometrical configuration and 
material properties.  In finite element analysis, it is desirable to conduct a full 3-D analysis to 
obtain accurate and detailed stress information.  Because a full 3-D analysis involves detailed 
modeling of the adhesive layer, structural components using brick elements and adequately 
fine mesh, it can be very expensive and may even become impossible  under certain 
circumstances.  Thus it is necessary to develop a simple, efficient and cost-effective finite 
element analysis procedure using simple adhesive elements to capture the main features of 
stresses in the adhesive layer, which enables an engineer to conduct a reliable rapid design of 
bonded joints.  There are only a few literature available reporting development of adhesive 
elements for modeling adhesive between two flat substrates.  Carpenter [2] developed two 
adhesive elements in which both shear and peel stresses are included in the finite element 
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formulation of the adhesive element.  Kuo [3] modeled the adhesive layer by a number of 
shear springs and proposed a two-dimensional continuous shear spring element.  However, 
the through-thickness normal stress, usually referred to as peel stress, in the adhesive layer 
was not included in the element formulation.  Sun et al [4] presented an efficient model for 
bonded repair to cracked aluminum plates.  In their model, both aluminum plate and 
composite patch are modeled separately by the Midlin plate element, whereas the adhesive 
layer is modeled with effective springs connecting the patch and aluminum plate.  Tong and 
Sun [5] proposed a simple, efficient and cost-effective finite element formulation for adhesive 
elements, which can be used to investigate the effect of curvature on the stresses in the 
adhesive layer.  However, in the finite element formulation, the adhesive thickness is assumed 
to be constant.  In practical structures, an adhesive layer in a bonded joint is often non-
uniform due to primarily lack of technologies for accurate control of bondline thickness in 
manufacturing process, especially for a curved joint.  The effect of non-uniform adhesive 
layer thickness on stress in bonded joint is still unknown.  In this paper, a novel finite element 
formulation is developed for adhesive elements for investigating stresses in bonded and 
curved joints with non-uniform adhesive thickness.  Numerical results are presented to 
illustrate the effects of non-uniform adhesive thickness on stresses in adhesive layer. 
 

FUNDAMENTAL FORMULATION OF ADHESIVE ELEMENT 
 
To model the behavior of an adhesive layer in a structural joint, the following assumptions are 
adopted: 
 
(a) Both adherends or structural components are perfectly bonded together; 
(b) The adhesive layer is thin and flexible, and the three in-plane stresses in the adhesive are 

very small compared to the three out-of-plane stresses and they can be neglected.  Similar 
to Tong and Sun [5], only the three out-of-plane stresses, i.e., normal or peel stress zzσ  
and the two out-of-plane shear stresses xzyz ττ and , are taken into account in the energy 
formulation of the adhesive layer; and 

(c) The three out-of-plane stresses are assumed to be constant across the adhesive thickness; 
(d) The two adherends are thin-walled structural components and can be modeled by 

employing the first-order shell theory. 
 
The above assumptions can be used to develop the 16-node adhesive shell element as 
depicted in Figure 1.  The element consists of two 8-node shell elements, modeling the two 
thin-walled adherends, and one pseudo brick element modeling the adhesive layer. Unlike the 
element presented by Tong and Sun [5], in this element the brick element sandwiched 
between the two shell elements is formulated to enable modeling of non-uniform adhesive 
layer. 
 
As shown in Figure 1, all the nodes of each shell element are located on its mid-surface and 
are denoted by solid circle marks.  The pseudo nodes of the 16-node adhesive element are 
marked as hollow circles and placed at the adhesive-shell interfaces, i.e., the upper surface of 
the lower shell element and the lower surfaces of the upper shell element.  For convenience, 
we use subscript "1" and "2" to indicate the variable of upper and lower shell element, 
respectively. Let h1 and h2 denote the thickness of the upper and lower shell element 
respectively, which are constants, and t the thickness of the adhesive layer.  Note that t is not 
constant and is dependent on location. 
 
Two nodal coordinate systems and one local coordinate system, namely x1y1z1, x2y2z2 and x'y'z', 
are employed to describe the nodal displacements and element strains. The nodal coordinate 
systems of x1y1z1 and x2y2z2 are the same as those defined in the shell element, which can be 
different from node to node.  The subscript "1" and "2" represents that the shell, where the 
nodal coordinate system is constructed.  The nodal displacements in this analysis are defined 
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in the nodal coordinate system.  For the local coordinate system, z' is the outward normal of 
the mid-plane of the adhesive layer.  x' and y' are tangent to the mid-plane of the adhesive 
layer.  As shown in Fig.1, all the node pair of the brick element, such as 1-9, 2-10, etc., should 
be located in the outward normal z'. In other words, the line going through every node pair 
should coincide with the outward normal of the mid-plane of the adhesive layer. It should be 
noted that the three coordinate systems could be degenerated to a single nodal coordinate 
system if the thickness of the adhesive layer is constant.  
 

 
 

Fig. 1 A 16-node adhesive shell element allowing non-uniform thickness of the adhesive layer 
 
Based on the basic assumption mentioned above, we can define three out-of-plane strains in 
the adhesive layer as follows 
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where the subscript "1B" represents the bottom surface of the upper shell element, and "2 T" is 
the top surface of the lower shell element. The prime denotes that the displacements in 
equation (1) are defined in the local coordinate system. Moreover, the two locations of the 
upper and lower shell element, where the displacements are referred to, should be located in 
the same outward normal of the mid-plane of adhesive layer. The thickness t is the distance 
between two locations. 
 
According to the first order shell theory that takes into account of transverse shear 
deformations, the displacements on the surface of the shell element can also be given by the 
corresponding displacements on the mid-plane, which are 
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where the superscript “0” denotes the mid-plane of the shell element. z is the distance from the 
mid-plane of shell element to the plane where the displacements are evaluated. 
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In general, for a shell element, the nodal displacements are defined in the nodal coordinate 
system as defined above. To establish the relationship between the strains and the nodal 
displacements, all these displacements must be transformed into one coordinate system. In 
this paper, the local coordinate system x'y'z', which is constructed on the point that three 
strains in the adhesive layer are evaluated, is employed to evaluate three out-of-plane strains 
in the adhesive layer.  
 
For the upper shell element, we can write the nodal displacement vector in its corresponding 
nodal coordinate system as 
 
{ } { }
{ } { } )8,,2,1(1

0
1

0
11

181111

Λ

ΛΛ

==

=

iwvuq

qqqq

yixiiiii

i

θθ
    (3) 

 
Then the nodal displacement vector in the nodal coordinate system can be transformed into 
the local coordinate system 
 
{ } [ ]{ }iii qTq 111' =          (4) 
 
where [ ]iT1  is the transformation matrix of 5�5 between the local coordinate system and the 
nodal coordinate system of node i in the upper shell element. 
 
The displacement field of shell element can be expressed by the nodal displacement as 
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where [ ]iN1  is the shape function matrix of 8-node isoparametric element and has the form 
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Then the displacement vector in the local coordinate system can be expressed as  
 
{ } [ ][ ]{ }1111' qTNq =          (7) 
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Similarly, the nodal displacement vector in the local coordinate system for the lower shell 
element can be written as 
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{ } [ ][ ]{ }2222' qTNq =          (9) 
 
where { }2'q , [ ]2N , [ ]2T  and { }2q  can be defined by replacing the upper shell subscript "1" 
with the lower shell subscript "2" in equations (3)-(8). 
 
Substitute equation (2) and equation (7), (9) into equation (1) and write in matrix form, we 
can obtain 
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where  
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Then we can obtain the geometric matrix for the adhesive layer 
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The elastic matrix for this pseudo brick element is 
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where E is the Young's modulus and G is the shear modulus of adhesive layer. 
 
Then the element stiffness matrix for the adhesive brick element can be given 
 

[ ] [ ] [ ][ ]dVBDBK
V

T∫=         (14) 

 
A numerical integration scheme, 122 ××  Gaussian quadrature, is employed to evaluate the 
stiffness matrix in equation (14). The thickness of the adhesive layer used in [B] should be 
that of the adhesive layer at the Gaussian point and the local coordinate system x'y'z' should 
also be constructed on the Gaussian point. The stiffness matrix of the adhesive element can be 
subdivided into four sub-matrix, which can be assembled to the global stiffness matrix in the 
same way as detailed in Tong and Sun [5]. 
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NUMERICAL EXAMPLES AND DISCUSSION 

 
An externally reinforced patch is bonded to the cylindrical shell, as shown in Fig. 2. The 
circular cylindrical shell and patch are assumed to be metallic and has a Young's modulus of 
70 GPa and a Poisson's ratio of 0.3.  The adhesive has a Young's modulus of 2.4 GPa and a 
Poisson's ratio of 0.33.  The geometric parameters are: L=150mm, arc length C=30mm, width 
of curved shell w=10mm, thickness of shell and patch H=5mm. The outer radius of the 
cylindrical shell is R and the inner radius of patch is r, respectively. There is an eccentricity e 
between the two circle centers of cylindrical shell and bonded patch.  
 
According to the symmetry of the structure with the symmetric load selected, two elements 
are divided in y direction and 60 elements are used in the patch along the circular direction. 

 

 
 

Fig. 2 A cracked cylindrical shell with an externally boned patch 
 
(a) A curved shell with a bonded patch subjected to tensile load 
 
The vertical displacements and rotation about y-axis at both ends of the circular cylindrical 
shells are assumed to be zero. A uniformly distributed load of 10 N/mm along the width of 
the circular cylindrical shell is applied upward at the middle point of shell. Four values of 
radius of cylindrical shell are considered, which are (1) R=150mm, (2) R=300mm, (3)  
R=450mm, (4) R=600mm. The thickness of the adhesive layer in the middle of the cylindrical 
shell is kept to be constant, which is t=0.15mm. For all the cases, three kinds of eccentricity, 
which are 0.0mm, -1.0mm, 1.0mm, are calculated. Both of peel and shear stresses 
distributions in the adhesive layer along half the adhesive bondline for R=150mm along 
y=±2.9mm are depicted in Fig. 3. For e=0.0mm, the adhesive element is degenerated to the 
former one proposed by Tong and Sun [5] and the same results are obtained using the two 
elements. From Fig.3, it can be seen that the stress distributions are similar for all three cases. 
But the peak stresses at the end of the adhesive layer (at the Gaussian point) have different 
values. The peak peel and shear stress values and their variation from that of uniform 
adhesive layer are given in Table 1. In the case of R=150mm, for the patch which has radius 
r=151.15mm, the thickness of the adhesive layer varies from 0.15mm to 0.17mm. The peak 
peel stresses are smaller than that of uniform adhesive. For r=149.15mm, the thickness of the 
adhesive layer varies from 0.15mm to 0.13mm. The peak peel stress is larger than that of 
uniform adhesive. For all three eccentricity cases, the peak shear stress is affected by the 
variation of the thickness of adhesive layer in the same form. The results for all values of R 
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indicate that variation in adhesive thickness tends to have a more remarkable effect on the 
peel stress than on the shear stress. 
 
(b) A curved shell with a bonded patch subjected to internal pressure load 
 
The boundary and the size of the structure are same as that in (a). The shell is 
subjected internal pressure load p=1.0Mpa. Both of the peel and shear stresses 
distributions in the adhesive layer for R=150mm are depicted in Fig. 4. The peak peel 
and shear stress values and their variation from that of uniform adhesive layer are given in 
Table 2 for different values of R=150, 300, 450 and 600mm. From Fig. 4 and Table 2, 
we can see that the peak stress becomes larger when the thickness of the adhesive 
layer decreases at the end of the patch, while it becomes smaller when the thickness of 
the adhesive layer increases. In this example, a bigger eccentricity e=±5.0mm is also 
considered. It is easy found that, for the same curvature, The peak values of stress at the end 
of adhesive layer increase with a decreased adhesive thickness and decrease with an increased 
adhesive thickness. 
 

CONCLUDING REMARKS 
 
In this paper, A novel adhesive element formulation is developed based on assumption that 
the three out-of-plane strains are constant across the adhesive layer thickness to analyze non-
uniformly bonded and curved joint.  The selected numerical examples demonstrate the 
following observations: 
 
(a) The peel and shear stress peak at the end of the adhesive layer; 
(b) The peak values increase with a decreased adhesive thickness and decrease with an 

increased adhesive thickness; 
(c) The effect of adhesive thickness becomes more noticeable when coupled with large 

curvature; 
(d) Peak peel stress seems to be more sensitive to varying adhesive thickness than the peak 

shear stress does.  
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Fig. 3 Stress distribution in the adhesive layer for a curved shell with a bonded patch 
subjected to a tensile load (R=150 mm, y=±2.9mm) 
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Fig. 4 Stress distribution in the adhesive layer for a curved shell with a bonded patch 
subjected to an internal pressure  (R=150 mm, y=±2.9mm) 
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Table 1 Peak stress at the end of the adhesive layer (x=29.9mm) for a curved shell with a 
bonded patch subjected to a tensile load  

(Values in the parentheses are variation from that of uniform adhesive layer)  

Radius (mm) Thickness at the end of 
the adhesive layer 

Peak peel stress 
(MPa) 

Peak shear stress 
(MPa) 

r=150.15 0.15      8.00 -4.05 

r=151.15 0.17     (+13.3%) 7.41  (-7.4%) -4.00 (-1.2%) R=150 

r=149.15 0.13     (-13.3%) 8. 69 (+8.6%) -4.10 (+1.2%) 

r=300.15 0.15      1.74 -0.98 

r=301.15 0.155   (+3.3%) 1.71 (-1.7%) -0.96 (-2.0%) R=300 

r=299.15 0.145   (-3.3%) 1.77 (+1.7%) -0.99 (+1.0%) 

r=450.15 0.15      1.81 -1.07 

r=451.15 0.1522  (+1.5%) 1.80 (-0.6%) -1.06 (-1.0%) R=450 

r=449.15 0.1478  (-1.5%) 1.82 (+0.6%) -1.08 (+1.0%) 

r=600.15 0.15       1.96 -1.20 

r=601.15 0.15124 (+0.8%) 1.95  (-0.5%) -1.20 (  0.0%) R=600 

r=599.15 0.14876 (-0.8%) 1.97 (+0.5%) -1.21 (+1.0%) 
 

Table 2 Peak stress at the end of the adhesive layer (x=29.9mm) for a curved shell with a 
bonded patch subjected to an internal pressure 

(Values in the parentheses are variation from that of uniform adhesive layer)  

Radius (mm) Thickness at the end of 
the adhesive layer 

Peak peel stress 
(MPa) 

Peak shear stress 
(MPa) 

r=150.15 0.15 95.3 -48.8 

r=151.15 0.17       (+13.3%) 89.2 (-6.4%) -46.5 (-4.7%) R=150 

r=149.15 0.13       (-13.3%)   103.0 (+7.3%) -51.6 (+5.7%) 

r=300.15 0.15 52.9 -29.5 

r=301.15 0.155     (+3.3%) 52.1 (-1.5%) -29.0 (-1.7%) 

r=305.15 0.174     (+16.0%) 48.9 (-7.6%) -27.4 (-7.2%) 

r=299.15 0.145     (-3.3%) 53.9 (+1.9%) -30.0 (+1.7%) 

R=300 

r=295.15 0.125     (-16.7%) 58.2(+10.0%) -32.2 (+9.3%) 

r=450.15 0.15 55.1  -32.3 

r=451.15 0.1522    (+1.5%) 54.7 (-0.7%) -32.1 (-0.6%) R=450 

r=449.15 0.1478    (-1.5%) 55.6 (+0.9%) -32.6 (+0.9%) 

r=600.15 0.15 59.7 -36.3 

r=601.15 0.15124  (+0.8%) 59.5 (-0.3%) -36.1 (-0.6%) 

r=605.15 0. 15615 (+4.1%) 58.5 (-2.0%) -35.6 (-1.9%) 

r=599.15 0. 14876 (-0.8%) 60.0 (+0.5%) -36.4 (+0.3%) 

R=600 

r=595.15 0.14375 (-4.2%) 61.1 (+2.3%) -36.9 (+1.7%) 

 


