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Abstract  

The paper  discusses stages of the meso-FE 
analysis of a unit cell of an impregnated textile 
reinforcement and proposes a succession of steps 
(“road map”) and the corresponding algorithms for 
it: (1) Building a model of internal geometry of the 
reinforcement; (2) Transferring the geometry into a 
volume description (“solid” CAD-model); (3) 
Preparation for meshing: correction of the 
interpenetration of volumes of yarns in the solid 
model and providing space for the thin matrix layers 
between the yarns; (4) Meshing; (5) Assigning local 
material properties of the impregnated yarns and the 
matrix; (6) Definition of the minimum possible unit 
cell using symmetry of the reinforcement and 
assigning periodic boundary conditions; (7) 
Homogenisation procedure; (8) Damage initiation 
criteria; (9) Damage propagation modelling. The 
“road map” is illustrated by examples of meso-FE 
analysis of woven and braided composites 
 
 
1 Introduction 

Textile composites are structured, hierarchical 
materials, having three structural levels:  
1. The macro(M)-level defines the 3D 
geometry of the composite part and the distribution 
of local reinforcement properties. The latter is 
connected to the former, as local parameters of the 
reinforcement (such as fibre volume fraction, 
reinforcement thickness and shear angle, hence local 
composite stiffness) are defined by the draping 
process during forming of the part. “Local” on the 
M-level means averaging (homogenisation) of the 
properties on the scale of one or several adjacent 
unit cells of the material, and corresponds to 

“global” on the meso-level. “Global” on the M-level 
means overall loading conditions of the part. 
2. The meso(m)-level defines the internal 
structure of the reinforcement and variations of the 
fibre direction and the fibre volume fraction inside 
the yarns and the fibrous plies. The internal structure 
is defined by the reinforcement textile architecture 
and deformations applied to the reinforcement 
during the part forming. “Local” on m-level means 
averaging (homogenisation) on the scale of several 
fibres (representative volume element (RVE) for 
fibre packing inside the yarn) of properties as fibre 
direction, fibre volume fraction and stiffness of the 
impregnated yarn. “Global” on the m-level means 
“local” on the M-level. 
3. The micro(µ)-level defines the arrangement 
of the fibres in the RVE of the impregnated yarn or 
fibrous ply. “Local” data on µ-level are properties of 
fibres, matrix and their interface. Homogenised, 
“global” parameters are used as “local” data on the 
m-level. 

Table 1 Parameters of the 3-axial braided composite 
Parameter Value 
Braiding pattern 

 
Areal density, g/m2 600 
Braiding angle, º 90 
Unit cell size (square shape), mm 14.4 
Carbon tows HTS 5631 Tenax 24K 
Fibre diameter, µm 7 
Matrix Epicote 828 LV/Epicure 

DX 6514 
Fibre volume fraction, % 44 
 

This paper deals with meso-level analysis of 
mechanical behaviour of textile composites, i.e. 

1 



S.V. LOMOV, D.S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai, S. Hirosawa 

textile reinforcement impregnated by a solid matrix. 
The bibliography of the subject is vast; we omit the 
references to the previous work of different 
researchers here for the reasons of the limited space 
of the paper. The reader is referred to [1] for a 
comprehensive review. Whilst similar issues could 
be considered for FE modelling of deformations of 
permeability of dry textile, these topics are out of 
scope of the present paper.  

This paper uses the following software tools: 
textile geometry modelling software WiseTex [ 2 ]  
two general-purpose FE packages: the commercial 
ANSYS software and a package SACOM, 
developed by M.Zako in Osaka University in the 90-
ies and extensively used by the Osaka group of the 
present authors for a wide spectrum of research 
topics. The general discussion is illustrated by an 
example of meso-FE analysis of 3-axial braided 
composite ( Table 1).  

 
2 Stages of meso-FE modelling  
Consider a typical problem of meso-FE modelling of 
a unit cell of textile composite under loading 
conditions representing its actual loading in a 
composite part. The following tasks can be 
performed (Fig. 1a): 
− For the given applied loading (which may 
include also thermal and cure stresses) calculate the 
stress-strain fields inside the unit cell; 
− Assess stress-strain concentrations and identify 
damage sites; 
− When damage occurs, recalculate the local 
mechanical properties of the impregnated yarns and 
matrix and recalculate the homogenised properties 
of the damaged composite. These calculations may 
proceed for increasing loading (along a certain 
loading path) to calculate the non-linear behaviour 
of the damaged composite (Fig. 1b). 
− Calculate the homogenised properties of the 
composite material in undamaged or damaged state 
The output of this meso-FE modeling may be: 
− Details of the stress-strain fields in the unit cell 
− Influence of details of the textile architecture on 
meso-scale: voids, uneven distribution of fibres 
inside yarns/plies, non-ideal local geometry of 
compacted yarns etc. 
− Stress-strain concentrations, hence strain limits 
for damage initiation 
− Damage development on meso-scale and 
deterioration of the homogenised mechanical 
properties 

− Material models (homogenised) to be used in 
macro-calculations for the elastic regime and for the 
non-linear behaviour of the composite, for 
undeformed and deformed (compression, shear, 
biaxial tension) state.  
In the following sections the stages of the “road 
map” are discussed in an orderly fashion. 

FE quality
translational symmetry

inherent symmetry
mesh size dependency

Mesh

meso-FE

Geometry Adaptation:

interpenetration of the volumes
symmetry of the unit cell

Solid model

Boundary 
conditions 

HomogenisationStress-strain fields

Material properties: 
µ-homogenisation

Solving m-FE model 

Macro conditions: part 
geometry, loading 

Average (macro) load 
on the unit cell 

 

meso-FEBoundary 
conditions 

HomogenisationStress-strain fields

Material properties: 
µ-homogenisation

Solving m-FE model 

Macro conditions: part 
geometry, loading (t) 

Average (macro) load 
path on the unit cell

Non-linear local matrix properties 

Geometry
Solid model…

Mesh…

Damage assessment

 
Fig. 1 “Road maps” for m-FE: (a) linear; (b) with 

damage 

3. Transforming geometrical model into 
description of volumes 
The geometrical and mechanical model of textiles, 
implemented in the software package WiseTex, 
provides a full description of the internal geometry 
of the following types of fabrics: 2D and 3D woven, 
two- and three-axial braided, knitted, multi-axial 
multi-ply stitched (non-crimp fabric). Input data 
include: (1) Yarn properties: geometry of the cross-
section, compression, bending, frictional and tensile 
behaviour, fibrous content; (2) Yarn interlacing 
pattern; (3) Yarn spacing within the fabric repeat. 
Energy minimisation and approximations of the 
shape of the yarns using “anchor points” is 
employed to calculate the internal structure of the 
fabric in the relaxed state and under compression, bi- 
and uniaxial tension and shear. The fabric model is 
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comprised of yarns and (for non-crimp fabrics) of 
fibrous plies. The yarns are transformed into 
volumes for FE modelling as follows. 
Fig. 2a illustrates the description of the yarns. The 
midline of a yarn is given by the spatial positions of 
the centres of the yarn cross-sections O: r(s), where 
s is coordinate along the midline, r is the radius-
vector of the point O. Let t(s) be the tangent to the 
midline at the point O. The cross-section of the yarn, 
normal to t, is defined by its dimensions d1(s) and 
d2(s) along axis a1(s) and a2(s). These axes are 
“glued” with the cross-section and may rotate 
around t(s). Because of this rotation the system 
[a1a2t] may differ from the natural coordinate system 
along the spatial path [nbt].  
 

 

O 

r(s) 

X Y 

Z 

α 

t

a1 

a2 

O
d2 d1 

 
 

 
 

P 
f 

Vf 

 
Fig. 2 Geometrical model of yarns and 
transformation into volumes of the solid model: (a) 
Cross-sections of a yarn in WiseTex model; (b) 
Building of the solid volumes and example of the 
solid model subdivided into volumes; (c) Properties 
of the fibrous assembly at a point P inside a unit cell 

 
The shape of the cross-section can be assumed 
elliptical, lenticular etc. Definition of the spatial 
positions of a yarn with a given cross-section shape 
in a unit cell consists therefore of five periodic 
functions: r(s) (then [nbt] vectors can be calculated), 
a1(s), a2(s), d1(s), d2(s). These functions are 
calculated for all the yarns in the unit cell by the 
geometrical model. When used in numerical 

calculations, all these functions are given as arrays 
of values for a set of points along the yarn midline, 
the quality of representation of the continuous yarn 
lines and especially the continuity of the tangent 
regulated by the fineness of the divisions of the yarn 
middle lines.  
This description fully defines the volumes of the 
yarns in a unit cell (Fig. 2b). The format is the same 
for orthogonal and non-orthogonal (angle α, Fig. 2a) 
unit cells. The in-plane dimensions of the unit cell X, 
Y are given by the repeat size of the textile structure, 
whereas the thickness Z is calculated as the 
difference between the maximum and minimum z-
coordinates of the cross-sections of all the yarns in 
the unit cell.  
To describe the fibrous structure of the unit cell, 
consider a point P and fibrous assembly in the 
vicinity of this point (Fig. 2c). The fibrous assembly 
can be characterised by physical and mechanical 
parameters of the fibres near the point (which are not 
necessarily the same in all points of the fabric), fibre 
volume fraction Vf  and direction f of them. If the 
point does not lie inside a yarn, then Vf=0 and f is 
not defined. For a point inside a yarn, the fibrous 
properties are easily calculated, providing that the 
fibrous structure of the yarns in the virgin state and 
its dependency of local compression, bending and 
twisting of the yarn are given.  

a 

The distribution of fibres over a cross-section is 
usually assumed uniform, and value of Vf is the 
same in all the points on the cross-section (but may 
differ from cross-section to cross-section according 
to the change of d1 and d2). Non-uniform distribution 
may be important for damage analysis – in this case 
Vf  will vary over the cross-section. 

b 

c  
4. Adaptation of the solid model and meshing 

4.1. Symmetry and boundaries of the unit cell 
Geometrical models of a unit cell can have correct 
translational symmetry properties, but may not be 
confined into a volume with flat facets (which will 
eventually be filled with matrix in FE model), which 
allows easy definition of loading and boundary 
conditions. To achieve that, the easiest way is to 
make a geometrical model of four unit cells, 
transform it into a solid model, and then, using tools 
of FE or CAD software, perform division operations. 
Fig. 3 illustrates this process, using an example of 
three-axial braided reinforcement. The model in the 
middle of Fig. 3d produces the same fabric geometry 
when translated periodically in two directions, as the 
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initial model (Fig. 3a), but it is confined into a 
parallelepiped. This transformation is standard for 
any periodic textile structure. The procedure of 
cutting out a repetitive element with flat facets may 
be especially useful in building models of layered 
randomly nested structures.  

a b c 
 

3 

2 

1 

4 X1 

X2 A 

B C 

d 

Fig. 3 Example of transformation of a solid model: 
three-axial braid. (a) Unit cell (WiseTex model); (b) 
Four unit cells (WiseTex); (c) Solid model of four 
unit cells in ANSYS; (d) selection of one unit cell 
confined into a parallelepiped and minimal unit cell 

Using the inherent symmetry of a particular fabric, it 
is possible to reduce the size of the model. Consider 
the three-axial reinforcement shown in Fig. 3. ¼ of 
the unit cell 1 is transformed into other three 
quarters 2,3,4 with the following mapping: 

( ) ( )
1 2

1 2 3 2 1 3

1 2 (rotation around the line ) :
, , , ,

x x
x x x x x x
→ =

→ −
 (1) 

( ) ( )
3

1 2 3 1 2 3

1 3 (rotation around the axis ) :
, , , ,

x
x x x x x x
→

→ − −
  (2) 

( ) ( )
1 2

1 2 3 2 1 3

1 4 (rotation around the line ) :
, , , ,

x x
x x x x x x
→

→ − − −

= −
 (3) 

Stress-strain fields calculated for ¼ of the unit cell is 
mapped over the full unit cell using equations (1-3). 
The symmetry equations are used to derive periodic 
boundary conditions for the reduced unit cell 
(section 5 below). We will see that using the 
symmetry of the unit cell may not be possible if the 
loading conditions do not possess the same 
symmetry. 
4.2. Correcting interpenetrations of the yarn 
volumes 
If the geometry for the meso-FE model is acquired 
by direct measurement of the yarn shapes in the 

composite, then there are no defects in mutual 
placement of the yarn volumes. However, such 
approach has limited predictive capabilities. 
General-purpose geometrical models, like the 
models, discussed here, use several simplifying 
assumptions. One of these assumptions is a fixed 
shape (but maybe changing dimensions) of the yarns 
cross-sections. The shape of the yarn middle line 
prescribes the positions of the centres of the cross-
sections. The model calculates dimensions of the 
cross-sections (d1 and d2, see Fig. 2b), ensuring that 
the distance between the contacting yarn centre lines 
is equal to the sum of their dimensions.  

                 a 

 b 

   c 

 d 

Fig. 4 Types of interpenetration of yarn volumes: (a) 
No interpenetration for the case of round yarns; (b) 
Very flat yarns; (c) Non-orthogonal configuration; 
(d) Very dense 3D woven fabric 

For quite a wide class of woven fabrics such a 
treatment is sufficient to create geometrical model, 
which can be easily meshed in FE package. The 
majority of the research cited in the introduction 
uses such a geometry for the simple cases of not-so-
tight, orthogonal 2D woven fabrics with the cross-
section of the yarns either close to cylindrical or 
elliptical/lenticular with width-to-thickness ratio 
below 5…10. However, the condition of point or 
line contact does not guarantee that the surfaces of 
the contacting yarn never penetrate one another, and 
interpenetration may occur (Fig. 4). Three types of 
interpenetration could be identified:  
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1. Tight orthogonal structures with flat yarns. The 
interpenetrations occur close to the middle of the 
yarn width (Fig. 4b). This is the easiest case, which 
could be for some configurations mended using a 
lenticular cross-section shape or by modification of 
the yarn dimensions, preserving the cross-section 
symmetry.  
2. Non-orthogonal intersections of flat yarns (Fig. 
4c). Yarn edges “cut into” the intersecting yarn. This 
type of interaction between yarns produces local 
compression, which leads to non-symmetrical yarn 
shapes, and cannot be resolved preserving the 
assumption of the shape symmetry. 
3. Tight placement of the yarns, especially in 3D 
fabrics (Fig. 4d). In reality the Z-yarn in this figure 
will be compressed laterally inside the fabric. This 
may not be accounted for by geometrical models. 
Whilst still usable for fibre orientation-, inclusion- 
or voxel-based models of micro-mechanics, such 
defects in the geometrical description are not likely 
to be corrected by any intersection algorithm. Meso-
FE analysis in this case requires more precise 
geometry as a starting point. 
The problem of interpenetration is not caused by 
assumptions of a particular model, but is a generic 
consequence of the constant shape of the yarns and 
limited – point or line – control of the contacts. 
Attempts to cope with the problem using local 
reduction of the dimensions of the yarns without 
changing the shape can solve the problem only 
partially, for not-so-thin cross-sections, not-so-tight 
fabrics and only for orthogonal intersections. The 
ultimate geometrical model handling the problem of 
volume intersections is still to be developed. This 
model would create yarn geometries with local 
deflection of cross-section shape accounting for 
local interactions of the yarns and accommodating 
accordingly the shape – non-symmetrical, freely 
defined by the points on the contour. The 
straightforward, but cumbersome way of building 
such a model is calculating yarn contact interactions 
with FE simulations of dry fabric, solving contact 
problems, and implementing correct mechanical 
behaviour in tension, compression and shear of the 
yarns as fibrous assemblies. Existing FE models of 
dry fabrics do not deal with such models. They 
calculate deformations of dry fabric, starting from a 
certain relaxed configuration, where the 
interpenetration should be avoided beforehand.  
The approach which we propose in the present 
paper, exploits the idea of calculation of local 
compressive deformation of the yarns, but it uses 
this as an intermediate calculation, performed on 

isolated parts of the yarns, does not use contact 
formulation, should be in general considered as an 
ad hoc solution and is very far from full FE analysis 
of the relaxed state of dry fabrics. Nevertheless, it 
works effectively in quite complex cases, can handle 
very thin cross-section shapes (width-to-thickness 
about 100) and is automated for a wide class of 
woven reinforcements, both orthogonal and non-
orthogonal. The proposed algorithm creates 
geometries of the contacting yarns reasonably 
resembling the actual distortions of the regular 
shapes due to the contact forces. However, the 
rigorous comparison with the real shapes of the 
yarns has not yet been made (the work is on-going).  
The correction of the yarn volumes for a woven 
fabric proceeds as follows (Fig. 5). 
 

A
B  a    

h 
 b 

∆z

   c    ∆z d 
 

c

  e   f 

  g      h 

Fig. 5 Algorithm of correction of the yarn shapes: 
(a) Subdivision of the unit cell; (b) Penetrating yarn 
volumes; (c) Separation of the yarn volumes and 
adding beam elements; (d) Intermediate FE problem; 
(e) Resulting non-penetrating mesh; (f) Assembled 
model with non-penetrating yarns 

Step 1. Preliminary meshing and division of the unit 
cell (Fig. 5a). The volumes of each of the yarns, 
exported from the geometrical model, are meshed 
separately. The unit cell is subdivided in a set of 
sub-problems, each containing one zone of the yarn 
contact. The division operation is crucial for the 
method, as it relies on having not more then one 
contact zone per sub-problem. The separation is 
done automatically, using information of the yarn 
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spacing and dimensions defined by the geometrical 
model: separation plane is positioned in the middle 
of the pore between the yarns. 
Step 2. Analysis of interpenetrations (Fig. 5b). 
Consider a sub-problem. One of the contacting yarns 
(A, Fig. 5a) will be moved during the solution, 
another (B) will remain in place. For all the points in 
the upper boundary of the A-yarn mesh, which are 
situated inside another yarn, a closest boundary 
mesh point of the B-yarn is found, and the vertical 
distance h between them is stored. The two nodes of 
A and B mesh form a pair (PA, PB). 
Step 3. Separation and adding beam elements (Fig. 
5c). Based on the calculated hp, where p is the 
number of the point, and on the user-defined 
clearance c between the two yarn volumes (Fig. 5e), 
the separation distance is defined as 

chz pp
+=∆ max      (4) 

The volume A is moved up by ∆z. Beam elements, 
connecting points in the pairs (PA, PB)p, are inserted. 
Step 4. Solution of the intermediate FE problem 
(Fig. 5d). Now the volumes A and B will be pressed 
together to create a non-penetrating configuration. 
The displacements on the cut-out facets of the 
volume A are assigned as ),0,0( zu ∆= , the cut-out 
facets of the volume B remain in place: u=(0,0,0). 
The stiffness of the beam elements is given by 

⎩
⎨
⎧

≤
>

=
clE

cl
E

b ,
,0

     

     
where l is the length of the beam, c is the user-
defined clearance. The value of Eb is arbitrary, as 
well as the properties assigned to the yarn volumes; 
the ratio of stiffness of the yarns and Eb can be used 
to tune the result of the sub-modelling. The Poisson 
ratio for the yarn volumes is set equal to 0.5 (or just 
below 0.5 to avoid numerical difficulties), to 
preserve the yarn volume and hence the fibre 
volume fraction within the yarns. 
The result of solving of the intermediate problem is 
shown in Fig. 5e. The yarn volumes are clearly 
separated by the clearance c, and the interpenetration 
is gone. 
Step 5. Assembling the model (Fig. 5f). Because of 
the displacement conditions imposed on the cut-out 
facets of the yarns, after solving of the intermediate 
problems these facets occupy the same positions as 
when the division of the unit cell was performed. 
Hence the model is easily reassembled and is ready 
for addition of the matrix volume, final meshing, 
applying boundary conditions and solving of the 

meso-FE problem for the unit cell. Fig. 5g,h 
illustrate the application of the automated procedure 
for the more difficult case of 3D woven structure. 
The procedure described above is suited for 
automated processing. When the initial division of 
the unit cell is not performed easily (as this is the 
case for the 3-axial braid of Table 1) and manual 
manipulations are needed (see [1] for details).  
Note that the presence of a thin layer of matrix in 
between the contacting yarns is important for 
successful meshing of the full meso-model. If this 
layer is absent, the touching yarn will form wedge-
like volumes, produce degraded elements and will 
lead to numerical artefacts in the solution in this 
region. 
4.3. Meshing 
After dealing with interpenetration of volumes the 
model of textile composite should inherit a geometry 
obtained in the intermediate modelling. The latter is 
presented by fragmented and separated yarn 
geometry and mesh. The deformed FE mesh of the 
intermediate problem cannot be used as a mesh for 
the final model since the elements have changed 
their shape while solution and are distorted. The 
deformed mesh is hence transposed to the solid 
entities. The new volumes are generated by the 
deformed element configuration and then joining 
these volumes. 
The subsequent meshing of the volumes of yarns 
and the matrix can be done using any meshing 
engine. Different strategies could be adopted: one 
may mesh yarn volumes first using sweeping of the 
planar mesh on the yarn cross-section throughout the 
yarn volume, and then build the mesh in the matrix, 
or rely on the quality of the mesh engine and ask it 
to mesh the whole unit cell volume automatically. 

 
Fig. 6 3-axial braid: The mesh in the yarns and the 
mesh in the matrix (the dashed lines show volumes 
of the yarns) 

The latter option (automated meshing in ANSYS) 
was used in the example of 3-axial braided 
composite (Fig. 6). The element used is a 3-D 20-
node (three degrees of freedom per node) structural 
solid element (SOLID186 of ANSYS). It has 
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quadratic displacement behaviour and is 
recommended for modelling irregular meshes. 
Prism-shaped, tetrahedral-shaped, and a pyramid-
shaped element are the particular cases of this 
element with a reduced 10-node scheme. The 
element shape at a place is chosen by an automatic 
mesh generator. Total number of elements for the 
quarter of the unit cell is 64,676, while node number 
is 83,739. 12,621 nodes are involved in the 
constraint equations for the symmetrical boundary 
conditions. Total calculation time for a linear 
problem was about 5 minutes on Pentium IV PC. 
5. Periodic boundary conditions 
The stress-strain fields in the unit cell should have 
the same properties of translational symmetry as the 
unit cell itself. If the unit cell is characterised by 
translation vectors b1 and b2 (Fig. 7), then these 
boundary points are transformed one into another by 
the translation 
 21, bBBbAA +=′+=′    (5) 
Conditions of periodicity for a given average 
deformation tensor ε  (given by macro-conditions 

of the test or by local results of a macro-simulation) 
are: 

( ) ( ) bAubAu ⋅=−+ ε    (6) 
for any point A on the boundary of the unit cell, and 
one of the translation vectors b. Note that equation 
(6) can be applied to a unit cell of any shape. 
 

3 

2 

1

4 X1 

X2 

A’ 

A A’’ 

A A’’ 

b1 

b2 

B 

B’’ 

B 
B 

B’ 

b1 b2 

b  
Fig. 7 Periodic boundary conditions: corresponding 
points for ¼ of the unit cell 

Equation (6) is easily implemented in FE packages 
using the apparatus of constraint equations, 
providing that the nodes on the opposite facets 
correspond one to another by (5). This means that 
the mesh on the opposite facets should be exactly 
identical, which is not necessary achieved by 
automatic meshing engines.  
When the model is reduced using the symmetry of 
the reinforcement geometry, relation (6) must be 
rewritten. Whitcomb [ 3 ] proposed a systematic 

procedure for deriving boundary conditions for 
partial unit cells with periodic microstructure. 
Application of this procedure of to the 3-axial 
braided composite, as shown in Fig. 7, consider first 
the correspondence of points on the boundaries of ¼ 
of the unit cell (designated 1 in Fig. 7), imposed by 
the periodicity of the full unit cell. Two periodicity 
vectors b1 and b2 must be accounted for.  
For the periodicity in direction b2 point A on the 
boundary of quarter of unit cell corresponds to the 
point A’ on the opposite face of the full unit cell. 
Point A’ is transformed into point A’’ on the 
boundary of quarter of unit cell by symmetry 
transformation (2). Equation (6) is rewritten for the 
corresponding points as 
ui (A) – γA α13 i j u j (A’’) = <ε> ik b2k  (7) 
where ui are components of displacement (i,j,k 
=1,2,3), repeating indices mean summation, {α13

ij} is 
the matrix of transformation of the quarters 1->3 (2), 
and the coefficient γA =±1 ensures the equivalence of 
the stresses and strains on the symmetric boundaries 
of the unit cell (the notation used here is the same as 
in [3]). For the case under consideration (rotation by 
π around x3) the sign of γ is chosen as follows: 
 γA =+1 for σ11, σ22, σ33, σ12;  
 γ A=-1 for σ23, σ13. 
The sign of γ is +1 for components of stress/strain, 
which do not change their sign after applying of the 
symmetry transformation, and -1 otherwise.  
The periodicity direction b1 presents a difficulty, as 
the corresponding facets of quarter of the unit cell 
are not on the borders of the full unit cell. To write 
boundary conditions for the right-bottom facet of 
quarter on the unit cell (point B, Fig. 7), consider 
another unit cell, created by translations 
b = b1 – b2 
Point B corresponds to B’ on the opposite side of 
this unit cell. Point B’ could be considered as 
belonging to the quarter 1 or quarter 2. Only the 
second possibility allows accounting for the 
symmetry transformation. Point B’ is transformed 
into point B’’ on the boundary of quarter of unit cell 
by symmetry transformation (1). Equation (6) is 
rewritten for the corresponding points as 
ui (B) – γB α12 i j u j (B’’) = <ε> ik bk  (8) 
where {α12

ij} is the matrix of transformation of the 
quarters 1->2 (1), and the coefficient γA =±1 ensures 
the equivalence of the stresses and strains on the 
symmetric boundaries of the unit cell. For the case 
under consideration (rotation around x1=x2) the sign 
of γ is chosen as follows: 
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 γB =+1 for σ11, σ22, σ33, σ13;  
 γ B=-1 for σ12, σ23. 
The left-bottom face of quarter of the unit cell is 
treated in the same manner. Note that conditions (7) 
and (8), in contrast to (6), relate points on the same 
facet of the unit cell. 
7. Material properties 
Yarns and fibrous plies are locally (on the scale of 
one finite element) represented as an unidirectional 
assembly of fibres. The direction of the fibres and 
the fibre volume fraction are calculated by the 
geometrical model, accounting for the uneven 
distribution of fibre volume fraction in the yarns, 
which is an important factor for prediction of 
damage initiation and development. 
The stiffness matrix of the material in the finite 
element is calculated using micro-meso 
homogenisation, based on empirical formulae or on 
micro-FE homogenisation. An example of the 
former are widely used formulae of Chamis: 
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Formulae (9) were used for calculation of the local 
stiffness properties for the 3-axial braid modelling. 
The second set of the material properties are 
parameters for the criterion of damage initiation, 
which are calculated from the strength of the 
unidirectional layer of fibres under different loading 
conditions. The difficulty here is dependency of the 
strength parameters on local fibre volume fraction, 
which may vary in a wide range (30…90%), which 
is not fully covered by the existing experimental 
data. Moreover the micro-mechanical damage 
theories are not fully validated for a 3D stress-strain 
state. Hence the assignment of the damage criterion 
parameters and their dependency of local fibre 
volume fraction is a question of “educated guess” at 
the present stage. In the absence of the experimental 
data the empirical approximate formulae can be 
used, as proposed by Rosen and Hirai: 
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where F are the UD material strength, ( t ) stands for 
tension, ( c ) for compression; L – fibre direction, T, 
Z – transverse direction; m – matrix; f – fibre. 
8. Homogenisation 
We consider below the meso-macro 
homogenisation. The same may be applied to micro-
meso homogenisation as well. 
On the macro-scale level the composite material is 
considered as homogeneous, with the relation 
between macro strains Ε and macro-stresses Σ, given 
by 

kl
H
ijklij C Ε=Σ     (10) 

(here and in all the formulae in this section, the 
indices are in the range 1…3 and the summation rule 
on the repeating indexes is used; no summation on 
indexes in brackets).  The aim of homogenisation is 
to find the macro-stiffness matrix CH, to be used in 
macro-FE analysis. On meso-level CH is defined by 
the (local) internal structure of the material and 
properties of the constituents. 
Standard approach to the problem of 
homogenisation is to consider the unit cell of a 
textile composite as a repetitive part of an infinite 
array of identical cells. Then meso-FE modelling 
can be used to analyse the response of the material 
on the meso-level and to derive the behaviour (10). 
This formulation allows using periodic boundary 
conditions (6) for the meso-model. The main 
assumption of the approach is infinity of the medium 
and exact periodicity of the meso-geometry and the 
stress-strain fields, which allows using periodic 
boundary conditions (6).  
These assumptions are not strictly applicable for the 
cases when the meso-geometry changes over a 
macro-part, or if there is a local change of the 
geometry, for example, damage. The former 
(differences of meso-geometry) normally happens 
over distances larger then several unit cells, and the 
periodicity can be considered as an approximation of 
real boundary conditions. The latter case cannot be 
treated that lightly, as periodicity assumes that the 
identical damage pattern is present in all the 
neighbouring unit cells, which does not agree with 
experimental observations.  
To determine the effective properties of the periodic 
composite, six boundary value problems for a unit 
cell have to be solved denoted as (i,n), i,n=1…3. In a 

8 



 MESO-FE MODELLING OF TEXTILE COMPOSITES: ROAD MAP, DATA FLOW AND ALGORITHMS

problem (i,n) the macro strain tensor has only one 
non-zero component: nlik

nini
kl δδε ),(),( Ε= , where 

...  is averaging over all the elements in the unit 
cell, ε denotes meso-strain. The six problems to be 
solved correspond to (i,n) = (1,1); (2,2); (3,3); (1,2); 
(2,3); (1,3). 
As the problem is linear, the value of is of no 
importance; we assume below 

),( niΕ
1),( =niE . The 

periodic boundary conditions (6) expressing 
continuity of the stress strain field in the periodically 
translated unit cells are written as follows: 
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in
k

in
k bbAubAu δδδ ==−+ )()(  (11) 

where A and A+b are the corresponding points on 
the boundaries of the unit cell.  
After solution of each of the six meso-FE problems 
(i,n) the strain tensor ( , )i n

pqε is calculated for each of 
the final elements of the model. The effective 
stiffness of the unit cell CH (10) is then calculated by 
averaging:  
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where C is stiffness of an element. 
The meso-FE analysis of 3-axial braid was 
performed using ANSYS and SACOM FE packages 
using two types of tetrahedral elements: quadratic 
(10 nodes) in ANSYS and linear (4 nodes) in 
SACOM. ANSYS calculations were done on 1/8 of 
the unit cell (Fig. 6), SACOM – on the full unit cell. 
The geometry of the mesh in both cases was exactly 
the same.  

Table 2 Homogenised properties of the 3-axial 
braided composite 

Young modulus, GPa Poisson coefficient Test 
direction Exp. FE CLT Exp. FE CLT 
0° 
(machine) 

32.6±1.1 35.9 36.2 0.73±0.06 0.61 0.77 

45° 
(braiding) 

36.8±1.8 38.6 44.8 0.07±0.02 0.07 0.07 

90° 
(cross) 

15.9±0.7 16.7 17.8 0.39±0.03 0.33 0.37 

 
Table 2 shows the homogenised properties of the 
composite, calculated using the procedure described 
above. The FE-computed values (which differ for 
the both variants not more then ±0.1 GPa for the 
stiffness and by 0.01 for the Poisson coefficient) are 
compared with predictions of simple laminate theory 
calculations and with experimental values, obtained 
with tensile testing of RTM-produced composite 
plates with four layers of the braided reinforcement. 
The laminate plate theory results were calculated for 

a laminate consisting of four layers. Three of them 
are characterised with orientation and fibre volume 
fraction of the yarns. The relative plies thickness 
was chosen according to in-plane fraction of yarn 
volume (volume of the braiding yarns in the unit cell 
is 1.414 times volume of the inlays). A matrix ply 
was added to balance the average volume fraction.  
The FE analysis (with the detailed modelling of the 
composite geometry) and the rough laminate model 
give similar results for the overall stiffness values 
(the latter gives overestimation of the stiffness not 
more then 12%). The need in FE analysis mainly 
comes from the aim to get an adequate description of 
the internal strain and stress state. Laminate model is 
unable to estimate influence of the bridging effect, 
yarn interaction, non-homogeneous matrix 
distribution and so on. 

 
Fig. 8 Linear meso-FE analysis of 3-axial braid:  
comparison of the ANSYS and SACOM solutions 

Once homogenised stiffness properties are defined, a 
tensile test is simulated (loading in machine –inlay 
direction). The average strain in machine direction is 
the governing parameter. Average strain in cross and 
thickness directions are set proportional to the 
governing strain according to the correspondent 
Poisson’s ratios. Fig. 8 compares solutions with the 
two different FE software packages (ANSYS and 
SACOM), which are very close, and shows the 
deformations of the unit cell in the elastic regime. 
The applied strain of 0.3% corresponds to the onset 
of damage, registered using acoustic emission and 
full-field strain measurements. 
9. Damage modelling 
The most straightforward way for simulating 
damage is to base the model on fracture mechanics, 
directly introducing cracks in the FE model. 
However it is computationally difficult to introduce 
free boundaries in complex textile architectures. 
That’s why only 2D or simplified geometries 
(mosaic model) were tried in the framework of 
classical fracture mechanics. Direct crack modelling 
requires a well defined crack path, which is only 
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known in the case of delaminations.  Shear lag 
models are known to provide reasonable prediction 
of the degraded stiffness, however these models 
require a dependence of crack density on applied 
strain to be known; the latter seems not to be 
invariant characteristics for the textile structures. 
Damage mechanics approach, which is based on 
damage variables without introducing cracks directly 
into the mesh, uses well established failure criteria 
and relatively simple tests on strength of 
unidirectional composites as an input data. 
Furthermore the modelling doesn’t require 
rebuilding mesh used for an elastic analysis, and 
thus it is computationally simple. The reader is 
referred to [1] for the detailed discussion, formulae 
and references. Here we present the results for the 3-
axial braided composite. 
 

 
Fig. 9 Stress index I 3-axial braided composite under 
tension in the machine direction, applied strain 
0.3%: (a) longitudinal HL; (b) transverse HT; (c) 
shear HLT 

 
Fig. 10 Damage development in 3-axial braided 
composite: scale defines load step when damage 
occurs; maximum corresponds to the earliest stage. 

As mentioned before, acoustic emission, full-field 
strain measurements and and X-ray investigation 
indicate onset of damage in the 3-axial braided 
composite under tension in the machine direction at 
the applied strain of 0.3%. Fig. 9 shows the stress 
indices according to the Hoffman criterion. The 
maximum value of the index HT = 0.94, hence the 
applied strain of 0.3% is close to the theoretical 
damage initiation strain. The damage is caused by 
transversal tensile stresses. Fig. 10 shows that the 
damage starts in the braiding yarn, lying at 45° to the 
loading direction, which corresponds to the X-ray 
observation of the damage. 

Good predictions of the onset of damage in textile 
composites (analogue to the “first ply failure” in 
laminates) has been shown in a number of 
publications We have calculated the damage onset 
threshold in the 3-axial braided composite for the 
following variants: (1) ANSYS and SACOM 
calculations with quadratic and linear elements 
correspondingly; (2) mesh finesse (number of 
elements) different by a factor of 2. For all the 
variants the damage initiation strain, predicted by 
Hoffmann criterion, varied in the range of 
0.3±0.02%. This shows robustness of the damage 
detection algorithm. 
However, when it comes to the damage propagation, 
the calculations show non-physical behaviour (Fig. 
10). The damage propagates along the yarn, in the 
direction of the fibres, as one expects and as it is 
observed in experiments, but it also propagates 
across the yarn, suggesting a multitude of micro-
cracks, which is not observed in experiment (there 
are one-two well-separated cracks over the whole 
yarn width). This seems to be a common drawback 
for meso-FE modelling of damage which use local 
damage criteria and properties degradation scheme, 
as the same effect is observed in calculation reported 
in literature. The effect is now a subject of our 
research. 
10. Conclusions 
We have presented an orderly approach to meso-FE 
modelling of textile composites. It makes clear that 
integrated modelling systems are in the order of the 
day, being ready to emerge in the coming years. 
Such a system will be suitable not only for academic 
research and illustration of principles, but also for 
serious treatment of practically important textile 
composites with complex architecture, and allowing 
rapid variation of the reinforcement structural 
parameters and mechanical properties of the 
constituents, using user friendly interface and 
adequate results both for linear and non-linear, 
damaged behaviour. An integrated FE-modeller 
should include the following modules: 
− A geometric modeller, which defines the 
volumes of yarns and fibrous plies in the unit cell of 
textile composite, local fibre parameters on the 
micro-scale and provides interface with FE package 
to export these data; 
− A geometry corrector, which adapts the 
geometrical model for requirements of the meshing 
engine and the particular necessities of boundary 
conditions formulation process; 
− A meshing engine; 
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− A material property processor, which assigns 
material properties to volumes/elements, using local 
fibre assembly parameters on micro-scale, provided 
by the geometrical model, and applying a certain 
model of homogenisation on micro-level, or even a 
menu for user choice of such a model; 
− Boundary conditions routines, facilitating 
posing periodic boundary conditions; 
− A FE solver and post-proccessor; 
− A homogenisation engine, which automatically 
applies the necessary loading and boundary 
condition, processes the results and outputs 
homogenised meso-stiffness matrix of the textile 
composite; 
− A damage detection processor, employing one 
of (user-chosen) damage initiation criteria; 
− A damage development processor, responsible 
for monitoring the damage tensor, change of the 
homogenised (on micro-level) properties and 
decisions on the damage propagation modelling. 
Based on the geometrical modeller WiseTex, 
commercial ANSYS and custom-developed 
SACOM FE packages, we have developed an 
integrated system, which includes all the modules, 
listed above. They constitute a solid basis for future 
work, leading to meso-FE modelling systems, 
integrated with macro-FE structural analysis and µ-
FE analysis of fine features of damage. 
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