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SUMMARY 
The purpose of the present work is to analyse the influence of the failure criterion on the 
minimum weight and cost of laminated plates subjected to in-plane loads. Three 
different failure criteria are tested independently: maximum stress, Tsai-Wu and the 
Puck failure criterion. The optimisation problem is solved by a genetic algorithm. 
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INTRODUCTION 
A laminated composite is usually tailored according to the designer’s needs by choosing 
the thickness, number and orientation of the plies. To achieve the best results, 
optimization techniques have been developed and, among them, the genetic algorithm 
(GA) has been widely used in the design of composite structures [1, 2, 3]. Known 
advantages of GAs include the following: (i) they do not require gradient information 
and can be applied to problems where the gradient is hard to obtain or does not exist; 
(ii) they do not get stuck in local minima; (iii) they can be applied to nonsmooth or 
discontinuous functions; and (iv) they furnish a set of optimal solutions instead of a 
single one, thus giving the designer a set of options. In the optimization of laminated 
composites, the ply thicknesses are often predetermined and the ply orientations are 
usually restricted to a small set of angles due to manufacturing limitations. This leads to 
problems of discrete or stacking-sequence optimization. Many objective functions have 
been used, such as the buckling load [1, 3] (to be maximized), the stiffness in one 
direction (to be maximized), the strength (to be maximized), as well as the weight or 
material cost [2, 4, 5] (to be minimized). A common constraint in laminated 
optimisation problems is the first ply failure, using well knows failure criteria (e.g., 
Tsai-Hill, Hoffman, Tsai-Wu). In addition to the failure criterion, other restrictions 
usually involved in the optimal design of laminated composites are laminate symmetry 
and balance, and a maximum number of contiguous plies (often used to prevent matrix 
cracking). One of the main criticisms of many studies related to optimal composite 
design is the use of failure criteria based on the von Mises or Hill yield criteria, which 
are more suitable for ductile materials [6]. In fact, as the failure behaviour of composite 
parts is similar to that of brittle material, it would be more appropriate to use criteria 



suited to materials that exhibit brittle fractures, such as Mohr’s criterion. A suitable 
criterion for composites that takes this fracture behaviour into account is, for instance, 
the Puck failure criterion (PFC) [6].  

 This work analyzes the effect of the choice of failure criterion on the minimum 
weight and cost of laminates. Three different failure criteria are considered: Maximum 
Stress (MS), Tsai-Wu (TW) and the Puck failure criterion (PFC). Special attention is 
given to the PFC, since, as previously mentioned, it appears to be better suited to the 
real behaviour of composite parts. A GA is used to achieve optimization, and 
constraints related to the first ply failure criterion as well as the symmetry and balance 
of the laminated plate are taken into account. 

 

FAILURE CRITERIA 
Failure analysis of laminated composites is usually based on the stresses in each lamina 
in the principal material coordinates [7]. The failure criteria can be classified in three 
classes: limit or non-interactive theories (e.g., maximum stress or maximum strain), 
interactive theories (e.g., Tsai-Hill, Tsai-Wu or Hoffman) and partially interactive or 
failure mode-based theories (PFC) [8]. In the present work, one criterion from each 
class is considered. 

 

Maximum Stress Failure Criterion (MS) 
According to the maximum stress theory, failure is predicted when a maximum stress in 
the principal material coordinates exceeds the respective strength. That is, 

                                   1 2orT TX Yσ σ≥ ≥            (for tensile stresses);  

                                   1 2orC CX Yσ σ≤ − ≤ −     (for compressive stresses) 

                                    12 12Sτ ≥                             (for shearing stresses) 

(1) 

where σ1 and σ2 are the normal stresses in the directions 1 and 2, respectively; τ12 is the 
shear stress in the plane 1-2; XT and XC are the tensile and compressive strengths parallel 
to the fibre direction, respectively; YT and YC are the tensile and compressive strengths 
normal to the fibre direction, respectively; and S12 is the shear strength. 

 

Tsai-Wu Failure Criterion (TW) 
The Tsai-Wu criterion, which is intended for use with orthotropic materials, is derived 
from the von Mises yield criterion. It states that the lamina fails when the following 
condition is satisfied 

2 2 2
11 1 12 1 2 22 2 21 12 1 1 2 22 1F F F F F Fσ σ σ σ τ σ σ+ + + + + ≥  (2) 

where Fi and Fij are parameters that are a function of the strength properties XT, XC, YT , 
YC  and S12 (see, for instance, [7]). 

 



Puck Failure Criterion (PFC) 
In this section, only the main features of the PFC are presented. The entire derivation 
can be found in [6]. The PFC follows Mohr’s hypothesis that fracture is caused by the 
stresses that act on the fracture plane. It involves two main failure modes: Fibre Failure 
(FF) and Inter-Fibre Failure (IFF) [6]. FF is based on the assumption that fibre failure 
under multiaxial stresses occurs at the same threshold level at which failure occurs for 
uniaxial stresses.  Instead of dealing with the principal material coordinates (axes 1-2-
3), IFF equations are derived based on the axes corresponding to the failure plane. 
These axes are shown in Fig. 1, where θfp represents the angle at which failure occurs. 
The PFC therefore provides not only a failure factor, but also the inclination of the plane 
where failure will probably take place, thus allowing a much better assessment of the 
consequences of IFF in the laminate. 

 
Figure 1: Transformation from the 1-2-3 axes to the failure plane axes (σn, τnt, τn1). 

 

 IFF is subdivided into three failure modes, as described in [6], which are 
referred to as A, B and C. Mode A occurs when the lamina is subjected to tensile 
transverse stress, whereas modes B and C correspond to compressive transverse stress. 
The classification is based on the idea that a tensile stress σn>0 promotes fracture, while 
a compressive stress σn <0 impedes shear fracture. For σn <0, the shear stresses τnt and 
τn1 (or just one of them) have to face an additional fracture resistance, which increases 
with |σn|, analogously to an internal friction [6]. The distinction between modes B and C 
is based on their failure angles, which are 0º for mode B and a different value for mode 
C. In addition, failure mode C is considered more severe, since it produces oblique 
cracks and may lead to serious delamination. The equations for the PFC are summarized 
in Table 1, where we also introduce a weakening factor fw, which decreases the strength 
of the laminate due to high stress in the fibre direction. According to [7],  fw is given by 

( )( )0.9
n

w E FFf f=  (3) 

where fE(FF) is the failure effort for FF in the lamina, and n depends on the matrix of the 
laminate (for instance, n = 6 for epoxy). We refer henceforth to this situation as 
PFC_fw, while we denote the situation where fw = 0 by PFC. 



Table 1: Equations for the PFC [6]. 
Type of failure Failure Mode Failure Condition (
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GENETIC ALGORITHM 
Genetic algorithms loosely parallel biological evolution and were originally inspired by 
Darwin’s theory of natural selection. The specific mechanics of genetic algorithms often 
use the language of microbiology, and their implementation frequently mimics genetic 
operations. A GA generally involves genetic operators (such as crossover and mutation) 
and selection operators intended to improve an initial random population. Selection 
usually involves a fitness function characterizing the quality of an individual in terms of 
the objective function and the other elements of the actual populations. Thus, a GA 
usually starts with the generation of a random initial population and iterates by 
generating a sequence of populations from the initial one. At each step the genetic 
operators are applied to generate new individuals. The fitness of each available 
individual is computed and the whole population is ranked according to increasing 
fitness. A subpopulation is then selected to form a new population. In this work, 
tournament selection is applied, and the process is repeated until a stopping condition is 
satisfied. 

The classical binary representation is not used; instead, the allowed angle values 
represent the genes of the chromosomes (i.e., [02   ±45  902]). In our numerical 
examples, we consider the optimization of a hybrid laminated composite (see Problem 2 
in Section Numerical Results). In this case, each individual in the population is 
represented by two chromosomes: the first describes the angle of orientation of the 
layer, and the second the layer material. When genetic operators are applied, they work 
simultaneously on both chromosomes of each individual. The genetic operators 
employed in this work are crossover, mutation, gene swap, stack-deletion and stack-
addition. Crossover is the basic genetic operator. It involves combining the information 
from two parents to create one or two new individuals. The X1-thin crossover operator 
was used [5]. The mutation operator, which randomly changes the value of a gene in the 
chromosome, must be applied in the GA to guarantee gene diversity so that the 
algorithm does not get stuck in local minima. The gene-swap operator selects two genes 
randomly from a laminate and then swaps them. It was introduced by Le Riche and 
Haftka [5]. In the example of the hybrid laminated composite referred to above, the 
crossover points of the two chromosomes for each individual are the same. In addition, 



when the gene-swap is applied, both orientation and material are swapped. We 
introduce two supplementary operators. The first one adds and the second deletes a 
lamina of the composite part under design. Both operators always act on the lamina 
closest to the mid-surface of the laminate, since it has the weakest effect on the bending 
properties of the structure. This feature may be important when buckling is involved, 
since buckling is highly dependent on the bending properties of the laminate. It is more 
convenient to delete the lamina with the weakest influence on the bending properties, 
since it is observed in practice that the algorithm rapidly converges to the best design 
for the most external laminae.  

In GAs, the most common ways of handling constraints are data structure, repair 
strategies and penalty functions [9]. The symmetry and balance of the laminate were 
handled by using the data structure strategy, which consists of coding only half of the 
laminate and considering that each stack of the laminate is formed by two laminae with 
the same orientation but opposite signs (for instance, ±450). A double-multiplicative 
dynamic penalty approach [9] was used to take into account the failure criteria. This 
approach leads to a penalty term being added to the objective function. The main 
advantage of this approach is that the penalization parameters do not need to be tuned.  

 

NUMERICAL RESULTS 

Problem 1 – Weight minimization 
Let us consider the minimal weight design of a laminated composite plate under the 
constraints of laminate symmetry and balance as well as the first ply failure criteria. The 
allowable orientation angle values are 02, ±45 and 902 degrees. Thus, the optimization 
problem can be stated as 

Find: { },k nθ , { }2 20 , 45, 90kθ ∈ ± ,  k = 1 to n 
Minimize: Weight 
Subject to: First fibre failure constraint: MS, TW or PFC 

(4) 

where θk is the orientation of each stack of the laminate and n the total number of stacks. 
As already mentioned, each stack is composed of two layers to guarantee balance. 

Different loading conditions were considered, and the optimization problem was 
solved for three different first ply failure criteria. We considered both the PFC_fw and 
PFC approach, the latter of which does not take into account the influence of the stress 
σ1 in IFF. As previously observed, PFC corresponds to fw = 0, while PFC_fw involves 
Eq. (3). 

Let us consider a carbon-epoxy square laminated plate subjected to in-plane 
loads per unit length Nx, Ny and Nxy, as shown in Fig. 2. Each layer is 0.1 mm thick, and 
the length and width of the plate are 1.0 m. The elastic material properties of the layers 
are E1 = 116600 MPa, E2 = 7673 MPa, G12 = 4173 MPa, Poisson’s ratio ν12 = 0.27 and 
mass density ρ = 1605 kg/m3, and the failure properties of the lamina are given in Table 
2. The plate is analysed using classical lamination theory [7].  

The optimization results for uniaxial loading (Nxx ≠ 0, Nyy = Nxy = 0) are given in 
Table 3. It can be noted that the PFC provides not only the failure factor (fE), but also 



the most probable failure mode (in brackets after the failure effort). The amount of 
stacks shown in all the tables correspond to the symmetric part of the laminate, and the 
total number is twice this value. The last column of the table (%) gives the relative 
weight difference between the laminate optimized using the PFC and the laminate 
optimized using the other failure criteria. 

 
Figure 2: Laminated composite plate subjected to in-plane loads. 

 
Table 2: Strength properties of carbon-epoxy (CE) lamina. 

XT 2062  MPa YC 240  MPa T1ε  0.0175 mσf 1.1 

XC 1701  MPa S21 105  MPa C1ε  0.014 )(
||
+
⊥p  0.3 

YT 70  MPa Ef1 230  GPa vf12 0.23 )(
||
−
⊥p  0.25 

 
Table 3: Optimal design for different failure criteria and uniaxial loading. 

Loading (N/mm)  Failure Criteria (FC) and weight  Stacking and weight difference 

Nx Ny Nxy  FC Weight 
(N) Ef   02 ±45 902 %a 

-10000 0 0  PFC 102 0.96 (FF)b  16   - 
    PFC_fw 102 0.96 (FF)  16   0 
    TW 95 0.96  15   -6.9 
    MS 95 0.98  15   -6.9 
            

10000 0 0  PFC 83 0.94 (FF)  13   - 
    PFC_fw 83 0.94 (FF)  13   0 
    TW 83 0.86  13   0 
    MS 83 0.93  13   0 

                       

a  percentage difference in relation to the weight obtained using the PFC. 
b  for PFC and PFC_fw, the letters in brackets indicate the failure mode that had the highest coefficient. 

It can be seen that for tensile uniaxial loading the three failure criteria led to the 
same results. However, for the compressive case, the TW and MS criteria generated 
lighter structures. In addition, TW results in a lower failure effort. The failure mode 
identified using the PFC was FF, which means that rupture of the laminate would 
probably occur in the direction of the fibre. 

The results for positive-positive biaxial loading and different shear load values 
are given in Table 4. The weight of the structure predicted by the PFC, PFC_fw and MS 
are the same for all the shear loading conditions. Furthermore, except for the highest 
shear load, these criteria generated lighter structures than those obtained with the TW 



criterion. For the PFC, the most probable failure mode is IFF mode A, which 
corresponds to the failure plane θfp = 0o (see Fig. 2). It can be seen from these results 
that for Nxy = 0, PFC and MS produced the same optimal weight but different stacking 
sequences. The stacking sequence obtained using the MS criterion was therefore tested 
with the PFC and PFC_fw criteria and was found to lead to a failure (mode A) for both 
PFC and PFC_fw. This means that for the same weight and very similar failure efforts, 
the MS criterion yielded a structure that does not satisfy the PFC restrictions on failure. 
This analysis can be extended relatively straightforwardly to the other shear loads 
considered in Table 4, as the stacks are all oriented at ±45. 
 

Table 4: Optimal design for different failure criteria and biaxial (+,+) loading. 
Loading (N/mm)  Failure Criteria (FC) and weight  Stacking and weight difference 

Nx Ny Nxy  FC Weight 
(N) Ef   02 ±45 902 % 

3000 3000 0  PFC 108 0.96 (A)  6 5 6 - 
    PFC_fw 108 0.96 (A)  2 13 2 0 
    TW 114 0.97  6 6 6 5.6 
    MS 108 0.96  5 7 5 0 
            

3000 3000 500  PFC 114 1.00 (A)   18  - 
    PFC_fw 114 1.00 (A)   18  0 
    TW 121 0.97   19  6.1 
    MS 114 1.00   18  0 
            

3000 3000 1000  PFC 127 0.98 (A)   20  - 
    PFC_fw 127 0.98 (A)   20  0 

    TW 127 0.99   20  0 
    MS 127 0.98   20  0 

 

Table 5 shows the results for optimum weight for a negative-negative biaxial 
load condition and different shear loads. In this situation, the result furnished by each 
failure criterion is quite different. The TW and MS criteria led to structures about 25% 
lighter than those obtained using the PFC. Thus, the failure criterion has a significant 
influence on the optimal weight of the structure in this situation. Here again, the failure 
mode determined by the PFC was IF. It is interesting to note that the case where the 
shear load is equal to zero led to different stacking sequences for each criterion. For this 
condition (when Nxy = 0), TW and MS stacking sequences were tested according to the 
PFC, and the analysis showed that the design based on the TW criterion would fail in 
mode C, while that based on the MS criterion would not fail.  

The results for positive-negative biaxial loading are shown in Table 6. In this 
situation, the results obtained using the different criteria differed significantly. 
Compared with PFC, TW overestimates the optimal weight by about 50% and the MS 
criterion underestimates the weight of the plate by about 30%. In this situation, the 
optimal weight is heavily dependent on the failure criteria and loading condition. The 
most probable failure mode predicted by the PFC depends on the shear load and the 
value of fw.  

 

 



Table 5: Optimal design for different failure criteria for biaxial (-,-) loading. 
Loading (N/mm)  Failure Criteria (FC) and weight  Stacking and weight difference 

Nx Ny Nxy  FC Weight 
(N) Ef   02 ±45 902 % 

-3000 -3000 0  PFC 57 0.93 (FF)  3 3 3 - 
    PFC_fw 57 0.93 (FF)   9  0 
    TW 51 0.80  4  4 -10.8 
    MS 57 0.91  4 1 4 0 
            

-3000 -3000 500  PFC 76 0.95 (FF)   12  - 
    PFC_fw 76 0.95 (FF)   12  0 
    TW 57 0.73   9  -24.7 
    MS 64 0.96   10  -16.3 
            

-3000 -3000 1000  PFC 95 0.95 (FF)   15  - 
    PFC_fw 95 0.95 (FF)   15  0 

    TW 64 0.75   10  -33.1 
    MS 70 1.00   11  -26.4 

 

Table 6: Optimal design for different failure criteria for biaxial (+,-) loading. 
Loading (N/mm)  Failure Criteria (FC) and weight  Stacking and weight difference 

Nx Ny Nxy  FC Weight 
(N) lambda  02 ±45 902 % 

3000 -3000 0  PFC 64 1.00 (A)  5  5 - 
    PFC_fw 76 0.86 (FF)  7  5 19.2 
    TW 95 0.91  9  6 49.0 
    MS 64 1.00  5   5 0 
            

3000 -3000 500  PFC 89 0.94 (FF)  7 2 5 - 
    PFC_fw 95 0.96 (A)  7 3 5 7.1 
    TW 114 0.97  10 2 6 28.6 
    MS 70 0.99  6 1 5 -21.4 
            

3000 -3000 1000  PFC 108 0.95 (FF)  7 6 3 - 
    PFC_fw 121 0.97 (A)  6 7 6 11.8 

    TW 134 1.00  10 5 6 23.6 
    MS 76 0.98  5 2 5 -29.4 

 

Problem 2 – Material cost minimization of a hybrid laminate 

In this problem, the material cost minimization of a hybrid laminated composite plate is 
described. Two types of layers are considered: carbon-epoxy (CE) and glass-epoxy 
(GE). The former is lighter and stronger, while the latter has a cost advantage as the 
price per square meter of this laminate is about 8 times less. As in Problem 1, the 
laminate is subjected to symmetry and balance constraints as well as the first ply failure 
criteria. A maximum weight constraint is also used in this problem. Thus, the 
optimization problem reads as follows 

Find: { }, mat ,k k nθ , { }2 20 , 45, 90kθ ∈ ± , { }mat GE, CEk ∈ ,  k = 1 to n 
Minimize: Material cost 
Subject to: First fibre failure constraint and a maximum weight of 70 N 

(5) 



In this problem, each CE and GE layer is assumed to cost 1 and 8 monetary units 
(m.u.), respectively. The properties of the CE layer and the plate dimensions are the 
same as those in Example 1. The elastic material properties of the GE layers are E1 = 
37600 MPa, E2 = 9584 MPa, G12 = 4081 MPa, Poisson’s ratio ν12 = 0.26 and mass 
density ρ = 1903 kg/m3, and the failure properties of the lamina are shown in Table 7. 
The in-plane applied loads are fixed values (Nx = 2000 N/mm and Ny = -2000 N/mm), 
and the optimization results are shown in Table 8. The underlined figures for the 
orientation correspond to GE stacks, and the remaining figures to CE stacks. 

 

Table 7: Strength properties of glass-epoxy (GE) lamina. 
XT 1134  MPa YC 150  MPa T1ε  0.0302 mσf 1.3 

XC 1031  MPa S21 75  MPa C1ε  0.0295 )(
||
+
⊥p  0.3 

YT 54  MPa Ef1 72  GPa vf12 0.22 )(
||
−
⊥p  0.25 

 It is interesting to note that the optimum obtained followed the same pattern in 
every case. All layers with an orientation of 0º are made of CE, while those with an 
orientation of 90º are made of GE. In addition, the GE laminae were the closest to 
failure. The cheapest structure (i.e, with the lowest material cost) was obtained using the 
PFC, while the TW criterion resulted in a material cost over 30% higher and yielded the 
heaviest structure. Table 8 also shows the maximum failure factor for the CE and GE 
laminae. The TW criterion yielded the largest gap between the maximum failure efforts 
for the two different materials at the optimum. Again, the PFC provides not only the 
failure effort, but also the expected failure mode of the structure. For example, the PFC 
predicts that the most probable failure mode is FF, while PFC_fw predicts IFF (mode 
A). As in weight minimization, each failure criterion yielded a different optimum. This 
reinforces the idea that the failure criterion significantly modifies the optimal design.  
 

Table 8: Optimal design of the laminate for different failure criteria. 
Cost and weight  Failure Criteria ( Ef )  Stacking and cost difference 

Failure 
Criterion Cost (m.u.) Weight 

(N)  CE GE  Stacking sequence % 

PFC 144 55.57  0.81 (C) 0.95 (FF)  ( ) ( )2 24 4
0 90

S
⎡ ⎤
⎣ ⎦

 - 

PFC_fw 148 63.11  0.69 (C) 0.94 (A)  ( ) ( )2 24 5
0 90

S

⎡ ⎤
⎣ ⎦

 2.7 

TW 208 68.23  0.27 0.99  ( ) ( )2 26 4
0 90

S
⎡ ⎤
⎣ ⎦

 30.1 

MS 148 63.11  0.66 0.84  ( ) ( )2 24 5
0 90

S

⎡ ⎤
⎣ ⎦

 2.7 

 

CONCLUSIONS 
In this paper, the effect of the failure criterion on the minimum weight and material cost 
of laminated plates was investigated. A genetic algorithm was developed and employed 
as an optimization tool because of its ability to deal with non-convex, multimodal and 
discrete optimization problems, of which the design of laminated composites is an 
example. The maximum stress, Tsai-Wu and Puck failure criteria (PFC) were tested for 
different loading conditions. Special attention was accorded to the PFC, since it appears 



to lead to the best description of the real behaviour of laminated composite structures. 
Two versions of PFC were considered: one involving a weakening factor and another 
that did not. 

 The results of this study show that the optimal weight of a laminated composite 
depends on the failure criterion as well as the load conditions (especially for the 
positive-compressive load condition) and that there is no direct connection between 
optimal weight and failure criterion: in other words, there was no criterion that was 
always the most or the least conservative. Our findings underline the dependence of the 
optimal design on the failure criterion chosen. Thus, the use of criteria that closely 
reflect the actual behaviour of the laminated composites under study is critical. In 
addition, it was observed that the optimal design obtained using a given failure criterion 
is not necessarily safe when a different criterion is considered as was the case of the 
positive-positive loading condition when Nxy=0. Although the optimal design and 
failure effort yielded by the MS and PFC criteria had the same weight, the MS design 
failed when tested by the PFC due to different stacking sequences. Thus, when 
optimizing laminated composite structures, the choice of a failure criterion 
corresponding to the real behaviour of the structure is crucial for both economy and 
safety. 
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