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1 Introduction
The Digital Image Correlation (DIC) technique has
established itself as an important tool in the area of ex-
perimental mechanics for more than three decades [1].
The valuable knowledge on the full-field displacements
and strains that the technique provides in 2D has paved
the way for interesting applications, such as mechanical
properties [2, 3], strain mapping [4], etc. The theo-
retical framework of DIC can be expanded into three
dimensions, in which case it is called Digital Volume
Correlation (DVC) [5]. DVC has found emerging ap-
plications in the past decade [5–7] concurrently with
the advances made in 3D imaging technologies, such
as X-ray tomography and confocal microscopy. DVC
allows for non-destructively evaluating displacements
and strains inside materials.The first developments of
DVC were based on local approaches [5, 8]. Later,
global approaches were developed based on trilinear
Finite Element (FE) shape functions [9], as well as
enriched FE shape functions for specimens containing
cracks [10]. However, as a result of the extension from
2D to 3D, the amount of data as well as the number of
Degrees of Freedom (DOF) for DVC is significantly
increased in both local and global approaches, when
compared to their 2D counterparts. Consequently, DVC
algorithms are highly demanding in terms of computer
resources. This limitation has hindered the practical
application of high-resolution DVC.

The present paper deals with the numerical aspects
of DVC, specifically as far as high-resolution DVC is

concerned. We propose a global approach based on
Fourier basis functions referred to as Improved Spectral
DVC (IS-DVC) hereinafter. Being an extension to 3D
of the Improved Spectral Approach (ISA) [11–13], IS-
DVC makes use of Fast Fourier Transform (FFT) to
convert the computationally cumbersome system of
equations in Fourier domain to an explicit equation
for the displacement field in the spatial domain. The
expression thus found can be evaluated quite efficiently.
The interesting feature of the approach lies in the fact
that the complexity of the correlation procedure does
not significantly increase for larger number of DOF.

2 Background
2.1 Concept of pattern matching
Let f(x) and g(x) represent the intensity functions
of spatial coordinates x = (x, y, z) corresponding to
the undeformed and deformed images, respectively. In
ideal conditions, these two configurations are correlated
through a mapping of coordinates expressed by the
following relation:

f(x) = g(x̆) where (1a)

x̆ = x + uexact(x) (1b)

where uexact(x) is the displacement vector field result-
ing from the applied loads. The exact displacement, in
the Volume of Interest (VOI), is estimated by a math-
ematical function with specified Degrees of Freedom
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(DOF), i.e.:

uexact(x) ≈ u(x; p) (2)

where p is the set of parameters representing the DOF
that should be determined from pattern matching. The
pattern matching consists in finding the parameters that
minimize the gap between f(x) and g(x̌). This can be
expressed as follows:

popt = argmin
p∈A

{
∫

VOI
[f(x)− g(x + u(x; p))]2 dx}

(3)
where A denotes the set of admissible choices for p
and the integrand is called the squared correlation
residuals that should be minimized. For the sake of
simplicity, the above formulation is written assuming
the intensity functions are continuous, hence the use
of integral operators. In practice, the discrete image
functions are interpolated using proper interpolation
methods [14–16] in order to perform the optimization
at sub-pixel positions.

2.2 Resolution strategy
Different approaches of DIC depend, in the first place,
on how the sought displacement field is formulated.
Nevertheless, no matter how it is formulated, the dis-
placement fields for different approaches can be ex-
pressed as the linear combination of several chosen
basis functions [17], which can be expressed in the
form of the following vector product:

u(x; p) =
[
ψ1(x) ψ2(x) · · · ψK(x)

]

υ1

υ2
...
υK


(4a)

where p ≡ {υn|n = 1, 2, · · · ,K} (4b)

υn are the sequence of unknown 3 × 1 (or 2 × 1 in
DIC) vectors associated with basis functions ψn(x)
and K is the total number of basis functions. Except
for some approaches (for example in [18]), a Newton
iterative strategy is often used to solve the problem (3).
The iterations start with an initial solution p(0) (lead-
ing to u(0)), at iteration i, g(x + u) is corrected for

u(i−1) and the new solution lies in finding the incre-
ment δu(i) = u(i) − u(i−1). It is assumed that the
sought increment, δu(i), is small enough so that one
can linearize g

(
x + u(i−1)(x) + δu(x)

)
as:

g
(
x + u(i−1)(x) + δu(x)

)
≈ (5a)

g
(
x + u(i−1)(x)

)
+∇Txg

(
x + u(i−1)(x)

)
δu(x)

provided that ∀x, ‖δu(x)‖ < ‖η‖. (5b)

where η is a small real vector,∇x denotes the gradient
operator with respect to vector x, and �T indicates the
vector transpose. Therefore, the First-order Optimality
for the problem (3) is written as:

∇υn

[∫
VOI

[
f(x)− ğ(i−1)(x)

−∇Tx ğ(i−1)(x)δu(x; p)
]2

dx
]

= 0 n = 1, 2, · · · ,K (6)

and

ğ(i)(x) = g
(
x + u(i)(x)

)
(7)

By applying the differentiation and after simplifications,
equation (6), is turned into a system of linear equations:

J11 J12 · · · J1K

J21
. . .

...
...

. . .
...

JK1 · · · · · · JKK



υ1

υ2
...
υK

 =


ρ1

ρ2
...
ρK


(8a)

where Jmn and ρm are 3× 3 (or 2× 2) and 3× 1 (or
2×1) matrices calculated from the following equations:

Jmn =
∫

VOI

((
∇xğ

(i−1) ⊗∇xğ
(i−1)

)
(x)

× ψm(x)ψn(x)
)
dx (8b)

ρm =
∫

VOI

((
f(x)− ğ(i−1)(x)

)
× ψm(x)∇xğ

(i−1)(x)
)
dx (8c)
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respectively, and ⊗ denotes the dyadic product. Equa-
tion (8a) is considered as the governing equation for
the gradient-based pattern matching.

2.3 Spectral approach
Roux et al. [13] and Wagne et al. [12] introduced a
very appealing approach based on the Fourier decom-
position of the sought displacement field in 1D and 2D,
respectively. In this framework, the displacement field
was expressed as:

u(x) =
∑
n

υn exp(̂ıωn · x) (9a)

where

ωn ∈

(pπL ,
qπ

L

)∣∣∣∣∣∣
n = 2Mq + p
p, q ∈ Z

−M ≤ p, q ≤M − 1

 ,

(9b)
L denotes the half-width of the Region of Interest
(ROI) andM ≤ L implies that only Fourier coefficients
within a square of size 2M×2M were used to estimate
the displacement field (i.e. K = 4M2). In the extreme
case where this square extends over the whole ROI size
(i.e. M = L), the displacement field is aimed to be
exactly reconstructed. However, this is not possible
due to the ill-posed nature of the inverse problem. In
their study, Wagne et al. [12] showed that M � L in
order for the approach to lead to meaningful results. It
is easy to show that with the chosen formulation, matrix
elements of the governing equation, i.e. equations (8b)
and (8c), turn into the following Fourier transforms:

Jmn = F
{(
∇xğ

(i−1) ⊗∇xğ
(i−1)

)}
[−m−n]

:= J̃[−m−n] (10a)

ρm = F
{(
f − ğ(i−1)

)
∇xğ

(i−1)
}

[−m]

:= ρ̃[−m] (10b)

where the Fourier transform of a function h(x) is de-
fined as:

F {h}[m] =
∫

ROI
h(x) exp (−ı̂ωm · x) dx (11)

(note that only the Fourier terms within the 2M × 2M
square are calculated in equations (10a) and (10b)).
Therefore, equation (8a) can be written in the following
form using the Einstein notation:

J̃[m−n]υn = ρ̃[m] summation over n (12)

The left-hand side of the above equation is a convolution
product. The main interest of the spectral approach lies
in the fact that instead of directly solving equation (12)
in the frequency domain, one may bring the calculations
back to the spatial domain. Thus, the convolution
operation turns into a simple matrix product in the real
space. In doing so, equation (12) is transformed to the
following practical form:

(
̂(

∇xğ ⊗∇xğ
)(i−1)

· δu(i)

)
(x) =

̂(
(f − ğ)∇xğ

)(i−1)

(x) (13)

where �̂ denotes low-pass filtering in the frequency
domain by preserving only 2M × 2M coefficients.
One faces here a 2× 2 linear algebraic system for each
point in the space. Such a system is analytically solved
giving rise to two explicit expressions for the estimated
displacement components. The main computational
burden is performing a forward and a backward FFT
to apply the Fourier low-pass filtering.

Wagne et al. [12] used multiscale iterations for large
displacement magnitudes [19]. The developed strategy
showed high reconstruction capacities while having
drastically low computational costs. However, their
approach suffered from a limitation stemming from
the periodic nature of the utilized basis functions, i.e.
the approach highly relied on periodic displacement
fields and periodic images; a condition that is rarely
met in real experiments. Meanwhile, this limitation
was shown to be alleviated in 1D by using prior dis-
placement correction using measurements based on a
linear displacement model [13] .

3 IS-DVC
In the IS-DVC, the 2D framework of the spectral ap-
proach is extended to 3D while improving on the accu-
racy and the functionality of the approach for practical
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applications. These improvements were completely
elaborated in the ISA [11] by the authors and will be
briefly formulated here in 3D. The number of DOF of
the sought displacement field in the spectral approach,
equation (9a), was determined by K (total number of
basis functions). Alternatively, it can be considered as
a box lowpass filter, which passes only 2M×2M basis
functions. In the ISA [11], this filter was replaced with
a Gaussian filter, which was shown to significantly im-
prove the accuracy of the measurements. Considering
the Gaussian filter as:

H(κ)
n = exp

(
−L

2‖ωn‖2

2π2κ2

)
, (14)

the sought displacement field is expressed in the fol-
lowing form:

u(x) =
∑
n

H(κ)
n υn exp (̂ıωn · x) (15)

ωn ∈

(pπL ,
qπ

L
,
sπ

L

)∣∣∣∣∣∣
n = 4L2s+ 2Lq + p

p, q, s ∈ Z
−L ≤ p, q, s ≤ L− 1


(16)

where κ is the cutoff wavenumber corresponding to the
Gaussian filter. Since the formulation of IS-DVC is
defined in 3D, u, υn and ωn are all 3× 1 vector fields
and the VOI contains 2L× 2L× 2L voxels. Similar to
the spectral approach, one should haveκ� L to ensure
the accuracy of the results [11]. Proceeding with the
improved formulation, one obtains the same governing
equation (13) as obtained in the spectral approach. Here,
�̂ denotes low-pass filtering in the frequency domain
using the maskH(κ). As in the ISA [11], the following
modification, inspired by the Hessian modification in
nonlinear optimization [20], ensures that the modified
dyadic tensor is always positive definite:

∀x, B(i)(x) :=
(

̂∇xğ ⊗∇xğ
)(i)

(x) + τ (i)(x)I
(17)

where I is the identity tensor and τ is defined as:

τ (i)(x) = max
{

0, δ0 − λ(i)
1 (x)

}
(18)

where δ0 is a positive real number (typical value 10−2)
and λ

(i)
1 (x) denotes the smallest eigenvalue of the

dyadic tensor field at iteration i. Therefore, equa-
tion (13) is modified into the following equation:

(
B(i−1) · δu(i)

)
(x) =

̂(
(f − g)∇xğ

)(i−1)
(x)

(19)
Provided that δ0 is small compared to the average
values of λ1, the resulting displacements are mean-
ingful enough to reduce the dissimilarity objective,
equation (3). Equation (19) is evaluated in 3D. The
analytical solution to the 3× 3 linear system (19) leads
to three explicit expressions for the displacement com-
ponents that can be evaluated for every voxel. Aside
from the additional computational burden dictated by
the 3D operations (e.g. 3D-DFT, arithmetic operations
and sub-pixel interpolation), the solution to the above
3× 3 system involves considerably higher number of
operations when compared to the 2× 2 version in 2D.
However, these operations are performed sequentially
and therefore can be carried out efficiently. Moreover,
thanks to the FFT advantages, the 3D-DFT operations
can be also performed with drastically less computa-
tional efforts, thus making the algorithm suitable for
3D applications.

In the iterative procedure, the cutoff wavenumber, κ,
was also gradually increased so that it reached its pre-
sumed value at final iterations, thus correcting for low-
frequency terms in the displacement before proceeding
to compute the high-frequency terms. Therefore, at
iteration i, the displacement field u(i) was corrected
as:

u(i) = u(i−1) + δu(i,κ) (20)

where δu(i,κ) was calculated from equation (19) using
te current value of κ. The algorithm decides to augment
κ when the Root Mean Square (RMS) of the correction
δu(i,κ), denoted byσδu, becomes inferior to 10−3. This
criterion is referred to as the stagnation measure. A
slight variation with respect to the ISA was used herein
to systematically stop the algorithm. The criterion was
based on the observed trend of the reduction in σδu as
a function of κ, which is illustrated in Fig. 1 As seen
from the trend, there is a jump in σδu as a result of
an increase in κ, which is due to the increased DOF
in the sought displacement field allowing for more
variations (hence a higher RMS) and probably a more
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Fig. 1: Illustration of the general trend of σδu as a
function of iterations. The jumps correspond to an
increase of κ due to the fulfillment of the stagnation
measure. It can be seen that these jumps decrease
logarithmically, as illustrated by the dashed line.

enriched reconstruction. However, this jump decreases
with a quasi-logarithmic decay as κ increases, which
means that the added DOF have less impact on the
accuracy of the measurement. Thus, there is a risk that
the κ-induced reduction of the uncertainty is overlaid
by noise- and interpolation-induced errors. Therefore,
the algorithm was set to stop when σδu at the jump
corresponding to κ became inferior to 10−3 (see [11]
for further details on the algorithm).

3.1 Other variations with respect to ISA
3.1.1 Prior correction for non-periodic displacements

The major utility of a two-fold correlation, is to remove
the limitation imposed by the Fourier-based decompo-
sition of the displacement field in the spectral approach.
This was shown by Roux et al. [13] and Mortazavi et
al. [11] to efficiently operate for non-periodic images
and displacement fields, in 1D and 2D, respectively.
In the ISA [11], the authors used a local approach fol-
lowed by 2D surface fitting to roughly estimate the
non-periodic part of the displacement field. However,
due to the additional computational burden associated
with the surface fitting algorithm, and for the sake of
simplicity in the evaluation of the presented examples,
a global approach based on an affine transformation for
the formulation of the non-periodic part of the displace-

ment field was considered (as previously done in [13]
for 1D images). In doing so, the initial solution u(0) in
IS-DVC is of the following form:

u(0) = (R0 + E0) · x + t0 (21)

where R0 and E0 are the homogeneous rotation and
strain tensors, respectively, and t0 is the rigid body
translation vector. The transform involves 12 DOF,
which are found by solving the pattern matching prob-
lem (??) through nonlinear optimization.

4 Simulated experiments
Three complex artificial experiments were performed
to evaluate the functionality of IS-DVC. In all experi-
ments, 8-bit 1283 voxel synthetic volume images were
artificially transformed to a priori known deformed
states using displacement fields simulated from me-
chanical analyses (referred to as exact displacement
fields hereinafter). The synthetic images were gen-
erated using the Fractals theory, namely, “Brownian
motion” [21]. This choice allowed for fast generation
of 3D images with random but correlated 3D textures.
Fig. 2 shows a typical volume image used in this study.
The root mean square of the error between the measured
quantities (displacement/strain) and their exact values
was calculated as the measurement uncertainty of the
corresponding quantity. To this end, the measured
values within 10 voxels near the volume edges were
excluded from the calculation to avoid any boundary
errors. In the first two examples, two different com-
posite geometries were considered, namely, a matrix
reinforced by randomly distributed spherical particles
in the first case (example I) and in the second case,
by randomly distributed ellipsoidal fibers (example II).
To this end, an in-house MATLAB code from another
study by the authors [22] was used to generate the
mentioned random microstructures for any given size
and volume fraction. The geometries are illustrated in
Fig. 4(a) and 5(a). The elastic response of the obtained
microstructures under 2% applied compressive strain
in z direction was subsequently calculated using an
FFT-based numerical method [23]. Table 1 lists the
properties used for generating the artificial data (geom-
etry and mechanical properties) for both composites.
In the third example, a displacement field with a discon-
tinuity was considered, namely, that of the analytical
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Fig. 2: Synthetic grayscale volume image (128× 128× 128 voxels, 8-bit) used for the artificial experiments as well
as its histogram. A different colormap was used here for illustrative purposes.

Table 1: Properties used for the generation of composites with spherical (example I) and ellipsoidal particles
(example II) used in the artificial experiments. Subscripts m and p refer to matrix and particle, respectively. E
denotes the elastic modulus and ν is the poisson ratio. The particle volume fraction is denoted by v.f.

Em (GPa) Ep (GPa) νm νp v.f.(%) aspect ratio size ratio (d† = L/r)
Example I 25 5 .2 .3 10 1 2.5
Example II 50 5 .2 .3 5 20 16
†d is defined as the ratio of image half-length (L) to the smallest particle radius (r), which gives an
estimation of the particle voxel-size in the volume image (see section 5).

mode I 2D crack. This example is interesting in the
sense that the discontinuous displacement field requires
a large number of DOF (high frequency bases) to be
approximated with a continuous displacement field ex-
pressed as per a Fourier expansion. This example is
useful to assess the potentials and limitations of the
presented approach. It should be noted that the accurate
measurement of discontinuous displacement fields is
not within the scope of the present approach as it would
require further considerations to deal with such cases.
The reader is referred to other approaches specifically
tailored for cracked specimens [10, 24, 25]. We used the
following discontinuous function for the z-component

of the preset displacement field, w, according to the
theory of linear elastic fracture mechanics:

w(x, r, θ) = CI
√
r

[(
η +

1
2

)
sin

θ

2
− 1

2
sin

3θ
2

]
(22)

where CI and η are mechanical constants and (r, θ) are
the polar coordinates centered at the crack tip in the yz
plane (crack oriented along θ = π).

The artificial transformations of the undeformed vol-
ume images were performed using the transformation
of their Fourier series, hence avoiding any interpolation
bias at this level of experiments. The tricubic B-spline
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interpolation scheme [16] was used for sub-pixel mea-
surement since it induces relatively small interpolation
bias [11].

5 Results and discussion
5.1 Examples I and II: artificial composites
Fig. 3(a) and 3(c) show the evolution of displacement
uncertainty as a function of the iterations, for both
examples. The measurements stopped at κ = 9 and
κ = 10 for examples I and II, respectively, according to
the criteria of section 3. The evolution of these criteria
are plotted in Fig. 3(b) and 3(d) as functions of the
characteristic subset length introduced in [11] for ISA,
i.e.:

` =
2L
ακ

(23)

where ` is the characteristic subset length and α ≈
1.05−1.25 (α = 1.05 was used for the aforementioned
plots). This parameter relates the cutoff wavenumber in
the frequency domain to a more tangible measure of res-
olution in the spatial domain. As shown in these plots,
at final iterations, the stopping criterion reached the
value 10−3, where the algorithm systematically stops.
Also, one notes the power-law fit for the reduction trend
of the stopping criterion, which confirms the validity
of the notions discussed in section 3. It is worth noting
that for every image correlation algorithm, successful
measurements consist in achieving a balance between
two divergent trends, namely, uncertainty reduction
thanks to increasing number of DOF (i.e. smaller char-
acteristic lengths) and uncertainty rise due the loss of
intensity variations as a result of smaller characteristic
lengths. In this sense, decision-making criteria, e.g.
the stopping and stagnation measures herein, become
key factors in the final accuracy of the measurements.
The exact tradeoff point (i.e. the minimum uncertainty
as a function of κ) for examples I and II was identified
as 0.0034 and 0.0038 voxels, respectively, ocurring at
κ = 11 for both cases. These values were obtained
by deactivating the stopping criterion to let the itera-
tions continue for higher values of κ and to see at what
point the minimum uncertainty occurs. Comparing
these values to the uncertainties at the final iterations
shown in Fig. 3(a) and 3(c), one concludes that the iter-
ations stopped very close to the tradeoff point, hence

confirming the suitability of the devised criteria.
Fig. 4 and 5 contain volume representations of some

measurement results for examples I and II, respectively.
The correlation residuals (Fig. 4(f) and 5(f)) ranging
between -0.5 and 0.5 (in the dynamic range scale of
the original images) imply that satisfactory correlations
have been established between the undeformed and
deformed states. Fig. 4 and 5(d)-(e) show the calcu-
lated εzz strain (exact and measured) mapped on the
deformed state of the volume. The measured strains
reveal a significant similarity to the exact simulated
strains, which means that IS-DVC was successfully ca-
pable of capturing the strain heterogeneities through the
volume. This can be better perceived from Fig. 4 and
5(b)-(c) , which represent the thresholded εzz strains
in the particles with threshold values -1.6% and -1.3%,
respectively. These values were chosen according to
the statistical distribution of the exact strain using “sim-
ple thresholding” (e.g. graythresh in MATLAB).
One recognizes a close estimation of the shape and the
orientation of the particles from their thresholded mea-
sured strain, when compared to the exact strain as well
as the original geometry. Table 2 gives the measured
strains uncertainties as well as the mean strain values
(denoted by a bar) within individual phases for the two
examples. The uncertainty of the εzz strain within the
particle (p) or matrix (m) is denoted by δεp/mzz and is
calculated as the following:

δεqzz =

√√√√∑i∈Ωq

(
εmeasured
zz (x〈i〉)− εexact

zz (x〈i〉)
)2

Nq

(24)
where Ωq denotes the ensemble of the regions contain-
ing the voxels of the individual phase q, and Nq is
the total number of voxels in that region. One notes
higher uncertainties within the particle, which is due
to the abrupt changes of the strain in the vicinity of
this phase. Nevertheless, this uncertainty is lower in
the case of composite with spherical particles. This
is mainly due to the lower elastic modulus contrast as
well as the larger particle size (lower size ratio) of the
spheres, when compared to those of the ellipsoids. The
former reduces the heterogeneity of the strain while
the latter increases the displacement resolution within
the particles.
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0.0039

(a) (b)

0.0041

(c) (d)

Fig. 3: Trend of displacement uncertainty as a function of iterations (a and c) and trend of σδu as a function of
characteristic subset length ` (b and d) for examples I and II, respectively.

Table 2: Strain uncertainties as well as strain averages within individual phases for examples I and II: Comparison of
averages with the exact strains.

κ ε̄mzz δεmzz ε̄pzz δεpzz
Artificial composite with spherical particles

IS-DVC measurements 9 -0.0230
0.0017

-0.0130
0.002

Simulation results (preset values) NA -0.0231 -0.0127
Artificial composite with non-aligned quasi-cylindrical fibers

IS-DVC measurements 10 -0.0206
0.0018

-0.0070
0.0035

Simulation results (preset values) NA -0.0207 -0.0065
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(a) (b) (c)

(d) (e) (f)

Fig. 4: (a) Geometry of the artificial composite with spherical particles (b) thresholded exact strain εzz with threshold
value = 1.6% (c) thresholded measured strain εzz with the same threshold value as that of (b) (d) exact strain εzz
image mapped on the deformed volume (according to the exact displacement field) (e) measured strain εzz image
mapped on the deformed volume (according to the measured displacement field) (f) correlation residuals for the
resulted measurements values are in the scale of the image dynamic range.

It is possible to derive a quantitative measure of
proper particle size ratio with respect to the cutoff
wavenumber κ using the characteristic subset length.
In order for IS-DVC to be able to best estimate the strain
within the particle, the particle’s (smallest) radius, r,
should be larger than the characteristic subset length,
i.e.

r >
2L
ακ

or κ > βd (25)

where d = L/r is the particle size ratio (see Table 1)
and β = 2/α ≈ 1.6− 1.9. On this basis, κmin for the
spherical particles turned out to be 5 while this value
for the elliptical particles was 25 ∼ 30. Obviously,
we did not reach this value for the ellipsoidal particles
due to the insufficient intensity variations associated
to the 3D texture of the volume image. The above
quantitative measure allows one to determine the fea-
sibility of high-resolution measurements for a given

composite geometry according to the particle size (in
voxels) within the image.

5.2 Example III: crack displacement field

For the third example, the algorithm stopped at κ = 13.
This means that higher DOF had larger impact on the un-
certainty reduction, when compared to the two previous
examples, which is not surprising since a discontinuous
displacement field should be estimated. The measure-
ments for w(x) along a vertical line containing the
discontinuity is plotted for κ = 3 and κ = 13 and
compared to the exact plot in Fig. 7. As seen from the
plot, for κ = 13, the displacement errors were rapidly
damped for regions away from the discontinuity. Fig. 6
shows the volume image of the displacement fieldw(x)
compared to the exact displacement. A close agreement
between the measured and the exact displacements can
be observed, especially for regions far from the crack
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(a) (b) (c)

(d) (e) (f)

Fig. 5: (a) Geometry of the artificial composite with elliptical particles (b) thresholded exact strain εzz with threshold
value = 1.3% (c) thresholded measured strain εzz with the same threshold value as that of (b) (d) exact strain εzz
image mapped on the deformed volume (according to the exact displacement field) (e) measured strain εzz image
mapped on the deformed volume (according to the measured displacement field) (f) correlation residuals for the
resulted measurements values are in the scale of the image dynamic range.

(a) (b) (c)

Fig. 6: (a) Exact displacement field in z direction for the analytical mode I crack (b) measured displacement field (c)
correlation residuals, values are in the scale of image dynamic range

surface. The displacement uncertainty excluding the
cracked region (10 voxels all around the crack) was
.006 voxels, which is very acceptable, when compared
to the other examples (Fig. 3). The correlation resid-
uals for this examples (Fig. 6(c) ) demonstrates how

well the algorithm has succeeded to correlate the un-
deformed and deformed images. Obviously, there are
significant residuals in the crack region, which means
that the algorithm underperformed in this area. The pre-
sented example reveals that such discontinuities have
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Fig. 7: Behavior of the measured displacement in the
vicinity of the discontinuity for example III

very little effects on the accuracy of the measurements
sufficiently far from the crack.

6 Conclusion
We proposed a global approach for fast and accurate
high-resolution DVC. The approach was an extension
to 3D of the 2D ISA based on a Fourier decomposition
for the sought displacement field. Several artificial
experiments were performed to evaluate the function-
ality of the IS-DVC for high resolution displacement
measurements. Especially, two artificial composites
were generated with spherical and quasi-cylindrical
non-aligned particles to simulate the artificial experi-
ments using synthetic images. The measurements on
the composites were proven to be very successful in cap-
turing strain heterogeneities through the volume with
acceptable uncertainties, both in displacements and
strains. Stopping and stagnation measures devised in
the IS-DVC algorithm were shown to be very efficient
in systematically stopping the iterations, hence adding
to the robustness of the whole measurement process.
Using the notion of characteristic subset length previ-
ously introduced in [11], a quantitative measure was
derived to estimate the proper particle voxel-size for
accurate capturing of strain heterogeneities as a func-
tion of cutoff wavenumber defining the measurement
resolution. This a priori knowledge would help better
designing experimental parameters (e.g. magnification,
imaging resolution, etc.) to obtain the best results from
IS-DVC. Furthermore, a third artificial example dealt
with the measurement of a discontinuous displacement

field of analytical mode I crack from linear elastic
fracture mechanics. The resulted measurement uncer-
tainties, although not very low in the vicinity of the
discontinuity, turned out to be fairly acceptable (around
0.006 voxel) for regions further from the crack. This
experiment assessed the stability of IS-DVC in dealing
with discontinuities.

The results obtained in this study are very promising
for high-resolution DVC thanks to the significantly
low computational costs associated with IS-DVC. It
should be noted, however, that this first step requires
further studies to deal with experimental limitations
such as noise and artifact effects, which may hinder
the full exploitation of the approach if not taken into
consideration.
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