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1 Introduction  

Randomly Oriented Fiber Reinforced Composites 
(ROFRC) are omnipresent in structural materials [1, 
2]. They have the advantage of easy manufacturing 
and good mechanical properties. They are used in 
automotive [1, 2], aerospace [3], construction and 
biomedical applications. The difficulty in fully 
exploiting ROFRCs lies partially in the lack of 
modeling efforts to understand and accurately 
predict their properties. The objective of this work is 
to provide very accurate estimates for the 
mechanical properties of randomly oriented fiber 
reinforced composites. In the literature, ROFRCs 
modeling is usually performed either through 
analytical models (e.g., Mori-Tanaka [4]), or 
through finite element (FE) models [5]. Most FE 
studies of ROFRCs did not establish if the volume of 
material they represented is actually the 
Representative Volume Element (RVE) of the real 
material due to the complexity of the RVE 
determination process. As a result, one could 
question the validity of a wide range of published 
papers on the topic. Analytical homogenization 
schemes, like the self-consistent and that of Mori 
and Tanaka, can provide firsthand effective 
properties estimations. However, their accuracy for 
randomly distributed high aspect ratio fibers has 
never been rigorously established.  
Several works have thoroughly assessed the 
modeling methods of simpler microstructures such 
as randomly dispersed spheres [6, 7] or aligned 
fibers composites [8]. In contrast, very few studies 
targeted the complex case of ROFRCs, especially 
for high aspect ratios (length over diameter). The 
highest aspect ratio for which the RVE has been 
reported is only of 5 [9], whereas ROFRCs materials 
such as carbon nanotube reinforced nanocomposites 
can have aspect ratios up to 1000. 
The specific objectives of this work are to i) 
rigorously and thoroughly determine the appropriate 
RVE for ROFCs and ii) also evaluate the accuracy 
of analytical homogenization models.  

In the following, the present work is described in 
three different sections: Sections 2 and 3 present the 
analytical and FE homogenization methods, 
respectively. Section 4 presents the RVE 
determination methodology. The effective properties 
of numerical homogenization of the RVE are 
compared to the analytical estimations in Section 5 
in order to validate the analytical models and 
identify the best suited analytical method for 
randomly oriented fibers microstructures. The 
conclusions are listed in Section 6. 
 

2 Analytical homogenization  

The analytical models are categorized as one- 
and two-step models. In one-step models, the overall 
properties of ROFRCs are calculated in a single 
homogenization step whereas a combination of two 
models are sequentially used in the second approach 
[10]. Two-step methods are noted herein by "1st 
method/2nd method". Three analytical models are 
herein presented, namely: the one-step Mori-Tanaka 
(M-T) scheme, the two-step Self-Consistent 
(SC)/Voigt and Lielens (Li)/Voigt models. 
 

2.1 One-step Mori-Tanaka 

Benveniste [11] presented the Mori-Tanaka 
formulation to describe composites with randomly 
oriented inclusions. The stiffness tensor is evaluated 
using the orientational average as: 

 
Cα

MT=Cm+cf{(Cf - Cm) : T} : [cm I + cf {T}]-1   (1) 
 

where C and c denote the stiffness tensor and the 
volume fraction, respectively. Subscripts ‘m’ and ‘f’ 
represent the matrix and fiber, respectively, and 
curly brackets {.} stand for orientation averaging. 
Tensor T is given by: 

 
T = [I + Sm : Cm

-1 : (Cf - Cm)]-1               (2) 
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where Sm is Eshelby's tensor [12] where the matrix is 
the infinite media. 

 

2.2 Two-step methods 

In two-step methods, the RVE is decomposed 
into a number of discrete subregions α (α= 1, 2, … 
n) where the fibers are aligned along an arbitrary 
direction as illustrated in Fig.2. The homogenized 
elastic tensor of each subregion, Cα, is calculated in 
a first step using either of the SC scheme or Li 
model. 

The SC scheme for aligned reinforcements is 
given by: 

 
CSC=Cm+cf[(Cf-Cm)]:[I+SSC:(CSC)-1:(Cf-CSC)]   (3) 

 
where SSC is Eshelby's tensor where the effective 
composite is the infinite media. 
 

The Li model is expressed by: 
 
CLi=Cm+cf[(Cf-Cm)]:[ÂLi[(1-cf)I+cfÂLi]-1      (4) 
 

where 
 

ÂLi={(1-c*)[Âlower]-1+c*[Âupper]-1}-1        (5) 
 

and c* is related to the reinforcements volume 
fraction as: 

c*=(cf+cf
2)/2                           (6) 

 
Âlower and Âupper are given by: 

 
Âlower= T                              (7) 

 
Âupper=[I + Sf : Cf

-1 : (Cm – Cf)]
-1           (8) 

 
where Sf is Eshelby's tensor where the reinforcement 
is the infinite media. 

Homogenization over all subregions is 
performed in a second step using the Voigt model: 

 
CVoigt = ∑α=1..n Cα Vα / V                    (9) 

 
where V and Vα are the volume of composite and the 
volume of each subregion, respectively, and Cα is 
the effective elastic tensor of a subregion calculated 
using one of the SC or Li models.  

 
 
 
 

3. Numerical homogenization 

Four steps were needed in order to compute the 
apparent properties of a single random 
microstructure: 1. random microstructure generation; 
2. volume meshing; 3. enforcement of boundary 
conditions and; 4. computation of the apparent 
properties. 

 

3.1 Microstructure generation 

Fibers were assumed to be cylinders of circular 
cross-section. A random fiber generator in a periodic 
cubic cell was developed with MATLAB. The 
generation algorithm was based on the modified 
RSA scheme proposed by [13]. The generated 
volumes were periodic, i.e., every fiber that crossed 
a surface of the cubic cell penetrated back from the 
opposite surface. The method consisted of 
sequentially adding fibers into a volume, while 
checking for contact interferences with all 
previously generated fibers, until the target volume 
fraction was reached. When verifying fiber 
interferences, a minimum distance of 2.5 times the 
radius was imposed between two fiber axes in order 
to adequately mesh the space between them. If a 
newly added fiber interfered with another fiber, the 
position of the new fiber was translated just enough 
to respect the inter-fiber distance limit [13]. If the 
translation resulted in interferences with other fibers, 
the new fiber was removed and repositioned 
randomly in the same volume. This operation was 
repeated until the new fiber location was free from 
interferences. Figure 3.a) shows a periodic volume 
generated with the developed MATLAB script 
containing 10 fibers of aspect ratio 20 at 5% volume 
fraction. 

 

3.2 Meshing 

The generated microstructures were transferred 
to ANSYS FE package for meshing. In order to 
apply periodic boundary conditions (PBC), 
homologous nodes on opposite surfaces had to 
match each other perfectly. The external surfaces of 
the cubic volume located at x=0, y=0 and z=0 were 
first meshed using triangular surface (2D) elements, 
and the meshing was copied to the homologous 
surfaces using the “MSHCOPY” command. 
Afterwards, the volumes of all fibers and matrix 
were meshed with 10 nodes tetrahedron elements. A 
mesh size convergence study was conducted and is 
not presented in this paper for brevity. Meshing the 
fibers with tetrahedron elements with a maximum 
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edge length equivalent to the fiber radius and that of 
the matrix with an edge length of 1/10 of the RVE 
cube's edge length were required. ANSYS 
Parametric Design Language (APDL) was used in 
scripts to automate the meshing process. Figure 3.b) 
shows a periodic volume meshed with 10 fibers 
having an aspect ratio of 20 and a volume fraction of 
5%. 

 

3.3 Periodic boundary conditions 

All FE models were transferred to 
ABAQUS/Standard FE package and solved under 
PBCs. In order to impose PBCs, each surface node 
displacement was coupled to its mirror node on the 
opposite surface according to: 

 
ux2- ux1= E (x2 – x1)                   (10) 

 
where uxi is the displacement vector of the node 
located at xi, x1 and x2 are two homologous nodes on 
opposite surfaces and E is the applied strain. 
Readers are referred to [13, 14] for a more detailed 
description on the PBCs application methodology. 
Once the PBCs were applied, the FE models were 
solved in ABAQUS Standard v. 6.10 using the 
iterative solver option, parallelising on 3 to 10 
XEON X7550 cores and using from 30 Gb to 600 
Gb RAM memory per model. 

 

4 RVE determination  

The RVE is defined herein following the work 
of [15] as an ensemble of random finite volumes 
(i.e., realizations) of the microstructure that yield, in 
average, the effective properties of the composite. 
The RVE is described using two parameters: the 
number of realizations and the volume size (i.e., the 
number of fibers included in the volume element of 
each realization). The determination of the RVE 
parameters was performed according to two RVE 
determination criteria, one for each parameter. 
Several RVE criteria have been tested in [13] and 
assessed with respect to their estimation of 
composite effective elastic properties. In [13], a new 
RVE definition was provided in which the 
confidence criterion was applied for determining the 
number of realizations, whereas an averaging 
variation criterion was applied to determine the 
number of fibers included in the volume, as 
described below. 

The confidence criterion is expressed by: 
 

CI %

Z
                           (11) 

 
where Z refers to the targeted property being either 
the bulk $k$ or shear $G$ modulus, ϵ is a fixed 
tolerance, CI95% and Z represent the 95% confidence 
interval and the arithmetic mean of the apparent 
moduli over the r realizations of the ensemble, 
respectively. 

The averaging criterion [13] consists of 
computing the average properties of the ensemble of 
realizations using the arithmetic and harmonic 
means: 

 

C=
1

r
∑ Ci

r
i=1                         (12) 

 

C=
1

r
∑ Ci

r
i=1                 (13) 

 
The corresponding elastic moduli denoted by Z 

and Z are computed from C  and C , respectively, 
using isotropy projectors. The estimation of the 
overall properties of the ensemble of realizations 
was considered as the average of both means: 

 

Z=
(Z+Z)

2
																												(14) 

 
The criterion states that the RVE is obtained 

when the difference between the ensemble overall 
properties and any of both means Z and Z is within 
the prescribed tolerance: 

 
Z-Z

Z

Z-Z

Z
																						(13) 

 

5 Results and discussion 

The elastic properties of ROFRCs have been 
evaluated for a wide range of fibers aspect ratios, 
volume fractions and contrast of properties. More 
than 2500 microstructures were generated, meshed 
and computed in order to determine RVEs and their 
corresponding accurate effective properties. 
Whenever the FE results are given, the 
corresponding RVE criteria tolerance ϵ is jointly 
specified. In this work, the contrast of properties 
indicates the ratio of the elastic moduli of the fibers 
with respect to that of the matrix. 

 

 

ICCM19 4487



 
MODELING ELASTIC PROPERTIES OF RANDOMLY ORIENTED FIBER COMPOSITES 

5.1 Aspect ratio study 

Figure 4 presents the effective elastic moduli of 
ROFRCs at 2\% volume fraction as a function of the 
fibers aspect ratio for a contrast of 300. All results 
have been normalized with respect to the matrix 
properties. The FE curves stop at the highest aspect 
ratio that was technically achievable with the 
modified RSA method and the available 
computational resources. The apparent scattering in 
the FE results is due to the non-zero RVE 
determination tolerance.  

Figure 4 shows that the one-step M-T and two-
step Li/Voigt analytical models provide the best bulk 
modulus predictions. However, for aspect ratios 
higher than 90, the few FE results presented in 
Figure 4 show very little changes in the bulk 
modulus when increasing the fibers aspect ratios. 
The analytical models do not have the same change 
in slope and, consequently, none of the models 
delivers accurate predictions for fibers aspect ratios 
over 100. The same conclusions were drawn for the 
shear modulus and for a volume fraction of 5%, but 
are not shown for brevity. 

The fibers aspect ratio at which stiffening 
saturation is observed (around 100) is of major 
importance to numerical modeling. A similar aspect 
ratio saturation limit (approximately 90) was shown 
in the study of Tucker III and Liang [8] for the axial 
Young modulus of aligned fiber composites at 20% 
volume fraction. The aspect ratio saturation limit 
provides a practical venue for an accurate 
reproduction of the effective properties of very high 
aspect ratio fiber composites via the modeling of the 
composite with the fibers at the aspect ratio 
saturation limit. The saturation aspect ratio can 
hence be accurately used for the modeling of 
composites with higher aspect ratios (e.g. carbon 
nanotubes with an aspect ratio of approximately 
1000), which are currently impossible to solve due 
to computational limits.  

 

5.2 Volume fraction study 

Figure 5 presents the effective elastic properties of 
ROFRCs for fibers of aspect ratio 10 as a function of 
the fibers volume fraction for a contrast of 300. For 
low volume fractions (up to 5%), all analytical 
models provide accurate estimates for the bulk shear 
modulus. For higher volume fractions, the model of 
Li/Voigt produces the most accurate bulk modulus 
predictions for all three aspect ratios and shear 
modulus predictions for aspect ratios of 10 and 20.  

The SC/Voigt model overestimates the effective 
bulk modulus of ROFRCs.  
 

5.3 Properties contrast study 

Figure 6 presents the effective elastic 
properties of 5% volume fraction ROFRCs for fibers 
aspect ratio of 20 as a function of the fibers/matrix 
contrast of elastic moduli. The models of M-T and 
Li/Voigt provide the most accurate estimates for the 
bulk modulus for all contrasts of properties under 
study. This observation can be extrapolated to higher 
contrasts ratios since the FE results, as well as the 
models of M-T, M-T/Voigt and Li/Voigt, have 
practically reached the properties contrast saturation 
limit. 
 

6 Conclusion 

The analytical models predictions of the elastic 
properties of ROFRCs were compared to accurate 
effective properties determined using FE numerical 
homogenization of the appropriate RVE. The 
comparisons were performed for a wide range of 
aspect ratios (up to 120), properties contrast (up to 
300) and volume fractions only up to 20%. 
The main conclusions are: 

- The analytical models of M-T and Li/Voigt 
provide accurate estimations of the bulk and 
shear moduli of low volume fraction (up to 
5%) ROFRCs and up to an aspect ratio of 
90, which was found to be the aspect ratio 
saturation limit. 

- For higher aspect ratios (over 90), tested 
analytical homogenization did not deliver 
accurate effective properties. The effective 
properties should be determined using 
numerical homogenization of the RVE using 
the aspect ratio saturation limit.  

- The model of Li/Voigt provides the best 
suited model for bulk modulus predictions 
for volume fractions over 5%. 

Therefore, it is concluded that if a single model 
was to be chosen for predicting the effective 
elastic properties of ROFRCs, the two-step 
method of Li/Voigt provides most accurate 
estimations over the largest range of 
microstructure parameters.  

Future studies should focus on improving 
the numerical homogenization process for 
ROFRCs to extend the range of computable 
microstructures in order to reach higher volumes 
fractions and aspect ratios. In parallel, efforts 
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should be employed to develop analytical 
models that are best suited for ROFRCs with 
very high aspect ratios and volume fractions of 
fibers. 
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Figures 

 
 

                      
Fig. 1 One step homogenization. 
 
 

                         
 
 

                         
Fig.2. Two-step homogenization methods. 
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Fig.3. Generated microstructure of a ROFRC 
containing 10 fibers of aspect ratio 20 at 5% volume 
fraction. a) Periodic geometric model and b) FE 
meshing. 
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Fig.4. Normalized bulk modulus of ROFRC at 2% 
volume fraction and contrast of properties of 300 as 
a function of the fibers aspect ratio. 
 
 

 

Fig.5. Normalized bulk modulus of ROFRCs with 
fibers of aspect ratio 10 as a function of the fibers 
volume fraction for a contrast of 300. 

 
 
 

 
Fig.6. Normalized bulk modulus of ROFRCs with 
fibers of aspect ratio 20 as a function of the 
properties contrast at a volume fraction of 5%. 
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