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1 Introduction  
Accurate identification of composite materials 
constitutive parameters is a complex problem. Full-
field measurement techniques, such as Digital Image 
Correlation (DIC) and Digital Volume Correlation 
(DVC), have progressively spread in the field of 
mechanical properties identification of composites 
constituents. These techniques can provide 
displacement or strain fields on the surface or even 
inside opaque materials, subjected to external 
loadings. Thanks to the experimental availability of 
such rich information, several identification 
techniques, either in the form of an inverse problem 
like Finite Element Model Updating (FEMU) [1] or 
direct methods like Virtual Fields Method (VFM) 
[2] have been developed. The FEMU method has 
been widely exploited to determine mechanical 
constants of composites [3,4]. The method aims at 
iterative updating of input mechanical parameters 
into a Finite Element (FE) model so as to minimize 
the discrepancy between measured and numerically 
(FE) predicted displacement fields. 
The VFM, as it name implies, is developed based on 
principal of virtual work [5]. Assuming that the 
deformation field over the surface of material is 
known, the aim in the virtual fields method is 
writing the equilibrium equation of internal and 
external work using a set of admissible virtual 
displacement and strain fields. In the case of linearly 
elastic materials this equilibrium leads to a linear 
system of equation, through which the unknown 
parameters are directly identified. The identification 
procedure was first developed by Grédiac [6] and 
has been successfully applied for determining 
material constants from elastic as well as elasto-
plastic constitutive models [7,8]. The method has 
been applied to identify bending [9,10] and in-plane 
[11,12] properties of composite materials. Through-
thickness characterization of composites either with 

a linear elastic or a nonlinear behavior, have also 
been studied [13]. The VFM is favored over the 
other identification methods due to some 
advantages. Unlike inverse methods, the VFM does 
not rely on the finite element calculations and allows 
direct identification (no updating) of constitutive 
parameters. Furthermore, in contrast to the FEMU 
method, the VFM does not necessarily require an 
iterative optimization procedure and no initial values 
are required for identifying sought parameters. 
Moreover, the sensitivity to noise in the measured 
data is less than the other identification methods, as 
investigated for instance by Avril et al. [14]. This 
method exhibits however some drawbacks when 
dealing with composites whose constituents 
stiffnesses possess significant contrast, such as E-
glass-epoxy or carbon-epoxy composites, especially 
in the presence of noisy strain fields. These 
composites have higher-order heterogeneity of strain 
fields and the high contrast phenomenon might 
result in inappropriate solutions for the stiffer phase 
that undergoes much less deformation.  
An improved FEMU strategy, namely Regularized 
Model Updating (RMU) [15] was recently 
introduced by the present authors and was 
successfully validated by conducting several virtual 
experiments. Regularization constraints based on a 
micromechanical homogenization model was added 
to the optimization algorithm in order to nullify 
noise effects that may adversely influence the 
quality of identified parameters. It was indicated that 
adding regularization terms enhances significantly 
the efficiency of the identification procedure in 
comparison with FEMU method. 

In this study a new Regularized Virtual Field (RVF) 
methodology for the accurate mechanical parameters 
identification of composite materials constituents is 
proposed. The novelty of this approach is that 
mechanical constraints, consisting of a 
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micromechanical homogenization model, are used in 
an optimization problem to regularize solving the 
related system of linear equations of the virtual 
fields method. For the purpose of evaluating the 
performance of the proposed approach, it was 
applied to identify elastic properties of a 2D 
artificial aligned long fiber composite from noisy 
full-field measured strain fields. 

2 The Virtual Field Method  

The VFM is basically developed through writing the 
global equilibrium of a body subjected to a given 
load, with the principal of virtual work (PVW) [2]. 
The idea is to expand the PVW with a set of 
independent Kinematically Admissible (KA) virtual 
fields, and to build up a linear system of equations 
involving the unknown parameters. By introducing 
the stress-strain relation in homogeneous material as 

! i = Qij" j  (1) 

for plane stress problems the principle of virtual 
work can be written as 

Qij
S! " j"i

*
ds = Ti

l! ui
*
dl      ∀ u* KA (2) 

where Qij’s are the components of the in-plane 
stiffness matrix, u* is the virtual displacement field, 
ε is the full-field measured strain field, ε* is the 
virtual strain field, S is overall surface of specimen 
and T is applied forces acting on its boundary. In the 
case of linear homogenous materials the matrix form 
of stress-strain constitutive equation is as below 
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For the case of linear elasticity, having the following 
relations between stiffness matrix components  

Qxx = Qyy , Qxy = Qyx  

 Qss =
(Qxy !Qyx )

2
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the principal of virtual works can be written as 
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If as many different virtual fields as there are 
unknown parameters be chosen, Equation (1) leads 
to the following linear system of equations (general 
form):  

 AQ = B  (6) 

where A is a square matrix and B is a vector whose 
components are the virtual work of the applied 
forces. The vector of unknown parameters Q can be 
determined by solving the above linear system.  
The choice of an appropriate set of virtual fields is 
one of the key-points for obtaining satisfactory 
identified parameters. The related virtual fields are 
chosen so that the resulting equations be linearly 
independent. Depending on the geometry of the 
specimen and its actual boundary condition they can 
be chosen intuitively but satisfy some requirements.  
Firstly, they have to be differentiable and have C0 
continuity. In addition, they must be Kinematically 
Admissible i.e. be null over a portion of specimen 
where the displacement boundary condition is 
applied for supporting and therefore distribution of 
external loading is unknown. 

3 Homogenization model  

The micromechanical homogenization models  relate  
the composite constituents properties to its overall 
properties. The Mori-Tanaka [16] homogenization, 
as one of the most accurate models has been chosen 
to be used in this study. According to this model, the 
stiffness tensor C of a two-phase linearly elastic 
composite can be expressed as  

C = C
0
+ c(C

1
! C

0
) :D  (7) 

where C0 and C1 are the stiffness tensors of the 
matrix and the fibers, respectively, c denotes the 
volume fraction of the fibers and D is the strain 
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localization tensor given by  
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where T0 = I (identity matrix), and T1 can be 
expressed as follows: 
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Note that S1 is Eshelby’s tensor and, for the aligned 
and continuous fiber composites, is only a function 
of the matrix Poisson’s ratio. 

4 The Regularized Virtual Fields (RVF) method 

The linear system of Eq.(6) in VFM is often solved 
by matrix inversion method. The other alternative is 
to solve the system of equation through an 
optimization procedure, i.e. minimization of the 
following least square objective function:  

R(Q) = (AQ
(k )

! B
(k )
)
T
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! B

(k )
)

(k = 1,2,...,M )
 

 

(10) 

where the value of M is equal to the number of 
virtual fields (unknown parameters). The key idea 
herein is to add a set of mechanically relevant 
constraints to the minimization of R(Q) so that the 
predicted effective properties from Mori-Tanaka 
homogenization model match those from 
experimental measurements. Hence, the RVF 
method aims at minimizing R(Q) subject to the 
following equality constraints:  

(!
i

MT
(Q) " !

i

exp
) = 0 (i = 1,2,...,N )  (11) 

Where λMT and λexp are the effective mechanical 
properties obtained from the Mori-Tanaka model 
and from the experimental procedure, respectively, 
and N is number of constraints. The imposed 
constrains define a feasible promising region for the 
updating parameters relying on the effective 
properties. Assuming that the composite's effective 
stiffness in the out-of-plane, i.e. z direction, is 
known and also depends on the fiber and matrix 
properties, the imposing constraints restricts the 
algorithm to follow some rational search directions 
during optimization. Therefore, adding a constraint 

for the out-of-plane stiffness when minimizing R(Q) 
can improve the accuracy of the identified 
parameters since additional physical information is 
added to the problem. 

5 Elastic properties identification of a 2D virtual 
composite using RVF method 

The methodology consisted first in generating a 
finite element model of an uni-directional long fiber 
composite, subjected to a set of boundary conditions. 
The computer-generated composite consisted of an 
isotropic matrix reinforced with randomly 
distributed infinite isotropic cylindrical fibers. Fig. 1  

 
Figure 1. 2D virtual composite  (volume fraction=5.5%) 

 

illustrates a cross section of this composite (volume 
fraction of 5.5%). Two different contrasts of elastic 
modulus were studied. The four reference elastic 
properties (elastic modulus and Poisson's ratio of 
fibers and matrix), being closely related to E-glass-
epoxy (Ef/Em=21) and carbon-epoxy (Ef/Em=100) 
composites, are presented in Table 1.  
Table 1. Reference elastic properties 

Composite Ef (GPa) νf Em (GPa) νm 

A 74 0.2 3.5 0.35 

B 350 0.2 3.5 0.35 

Subscripts f and m in Table 1 refer to fibers and 
matrix, respectively. 

The resulting displacement fields from simulated 
composites were used to deform an artificial image 
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to obtain a pair of deformed and underformed 
images. The images were generated using analytical 
function of discrete Fourier transform. This allowed 
defining the deformed image by calculating the 
discrete values, hence avoiding any interpolations 
and the related errors.  
A digital image correlation algorithm [17] was then 
used to measure the strain fields from artificial 
images. The applied DIC algorithm was based on an 
Improved Spectral Approach (ISA) that reconstructs 
continuous displacement fields from their Fourier 
basis functions. Thanks to the Fourier-based 
formulation, the algorithm leads to fast and accurate 
measurements using Fast Fourier Transform (FFT). 
Furthermore, the continuum-based framework on 
which the algorithm is developed enables more 
reliable measurements than those obtained by the 
subset-based algorithms. The strain fields were 
derived from measured displacements, which were 
then considered as the "measured" strain fields in 
this study. 
For the purpose of evaluating the robustness of the 
RVF approach, a set of noisy measured strain fields 
representative of real experiment conditions was 
simulated. The standard deviation of measurement 
error was used as an estimation of uncertainty 
between measured and FE strain values. For 
generating noisy strain fields Gaussian white noise 
with two different noise levels was added to the 
input image prior to strain measurements, and 
consequently a set of noisy measured data with 
standard deviations of 2% and 10% of mean strain 
values were generated. Fig. 2 shows the measured 
strain fields in both x and y directions (εx and εy) 
with the noise level of 2%.  
The regularization constraints presented in Eq.(11) 
requires the constant values of effective properties 
(λexp) during optimization process. The experimental 
effective properties of the composite were computed 
from FE model. Real composite specimens are 
usually large enough to be considered as 
Representative Volume Element (RVE) of a larger 
structure. In the finite element model of a rather 
small volume however, a RVE must be determined 
so that the model contains minimum heterogeneity. 
A RVE study was therefore performed where the 
evolution of the composites effective properties was 
evaluated as a function of the number of meshed 
fibers and for a number of realizations. The RVE 

size was determined by convergence of elastic 
modulus value.  

 
a) strain in x direction (εx) 

 
b) strain in y direction (εy) 

 
Figure 2. Measured strain fields with noise level of 2%;  
a) εx  and  b) εy 

 
Characterization of the long fiber composite was 
performed by applying both VFM and RVF 
methods. The aim of both algorithms was to retrieve 
the reference elastic properties of composite 
constituents that were initially input to generate the 
"measured" strain fields. The constitutive materials 
for both phases are assumed to be isotropic. 
Knowing that the whole material is not 
homogeneous, for factorizing the sought parameters 
out of the surface integrals (see Eq.(5)), the overall 
surface of composite (S) is split into S-S' and S' i.e. 
matrix and fibers subregions, respectively. Hence, 
denoting Qxx, Qxy and Q'xx, Q'xy the stiffness 
components over S-S' and S', respectively, Eq. (5) 
can be rewritten as 
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Four KA virtual fields independent from each other 
and compatible with the presented boundary 
condition must now be chosen. Regarding the 
biaxial loading condition, where the distribution of 
loading is known throughout the boundary of 
material, the virtual displacements u*(i) and the 
corresponding strain fields ε*(i) are defined by  
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As it can be seen, all of the virtual displacement 
fields indicated above possess the required 
conditions, i.e. they are differentiable and also have 

C0 continuity. Using these virtual fields and 
assuming identical dimensions of composite in x and 
y directions (Lx = Ly =L), the following system of 
equation is established from  Eq.(12)  
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The linear system indicated in Eq.(17) was solved 
through matrix inversion (VFM) as well as using a 
constrained optimization procedures (RVF method) 
in order to determine the stiffness components.  
With respect to Eq.(10), the least square objective 
function of the problem was developed from the four 
constitutive equations of linear system Eq.(17). 
Hence, the following constrained optimization 
problem was solved in the RVF method to identify 
the stiffness components 

min R(Q) = (AQ(k ) ! B(k ) )T .(AQ(k ) ! B(k ) )

Subject to

(El

MT (Q) ! El

exp ) = 0

(" lt

MT (Q) !" lt

exp ) = 0

#

$
%

&%

 

 

 

(18) 

where subscripts l and t indicate the out-of-plane and 
in-plane directions, respectively and the values of 
El

exp and νlt
exp were obtained from RVE size of the 

composite using the related FE mesh. 
The RVF identification was applied to the full-field 
measured data of the composite using Mesh 
Adaptive Direct Search (MADS) optimization [18] 
method. MADS is a frame-based global optimization 
algorithm for solving nonlinear problems without 
having any derivative information. The method is 
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known to be quite robust for optimization problems 
with nonsmooth objective functions subjected to 
nonsmooth constraints.  
The stiffness components obtained from VFM was 
considered as initial solution at the beginning of 
optimization process in the RVF identification. At 
each iteration the numerical values of the constraints 
were evaluated after substituting new material 
parameters into the Mori-Tanaka model, and the 
feasibility of trial points was checked by equality 
constraints.  
The following relations directly relate the elastic 
mechanical properties of constitutive phases to the 
stiffness components 

!m =
Qxy

Qxx

, E
m
= Q

xx
(1!"

m

2
)  

! f =
Q 'xy

Q 'xx
 , Ef = Q 'xx (1!" f

2
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For numerical validation, the first sets of strain data 
processed in the identification were those obtained 
directly from finite element simulations of the 
composite. The whole algorithm involved a 
blackbox that consisted of a main Matlab code and 
several subroutines associated to Mori-Tanaka 
homogenization model. The stopping criterion for 
the MADS algorithm was reached when a maximum 
number of 300 objective function evaluations was 
performed. 

4 Results and discussion  

Table 2 shows the obtained elastic properties of 
composite A with both VFM and RVF identification 
methods in different noise levels and also the 
corresponding errors resulted from each method. 

As it can be seen, when dealing with the strain fields 
of zero noise (FE data) the VFM results in a 
relatively accurate set of parameters except for the 
poisson’s ratio of fibers which has the maximum 
value of error. By applying the RVF algorithm the 
mentioned error is decreased and the same quality of 
results are acquired for the other parameters. It is 
clear that the accuracy of matrix parameters is 
generally higher than that of fibers. When dealing 
with the strain fields with noise level of 2%, among 
the parameters identified by VFM the fibers 
parameters are more influenced by noise effects than 

Table 2. The identified parameters of composite A with VFM 
and RVF identification methods 

Properties Ef (GPa) νf Em (GPa) νm 

Targets 

Method/Noise level 

74 0.2 3.5 0.35 

VFM / FE data 

(rel. error) 

75.9 

(2.6%) 

0.223 

(11.5%) 

3.49 

(0.3%) 

0.350 

(0%) 

RVF / FE data 

(rel. error) 

71.6 

(3.3%) 

0.185 

(7.5%) 

3.47 

(0.6%) 

0.352 

(0.6%) 

VFM / 2% 

(rel. error) 

69 

(6.7%) 

0.219 

(9.5%) 

3.45 

(1.4%) 

0.350 

(0%) 

RVF / 2% 

(rel. error) 

72 

(2.7%) 

0.193 

(3.5%) 

3.43 

(2%) 

0.351 

(0.3%) 

VFM / 10% 

(rel. error) 

82.3 

(11.2%) 

0.125 

(38%) 

3.40 

(2.8%) 

0.360 

(2.8%) 

RVF / 10% 

(rel. error) 

72.18 

(2.4%) 

0.208 

(4%) 

3.43 

(2%) 

0.350 

(0%) 

 

the matrix parameters. This is because of high strain 
field heterogeneity between two phases, which 
makes the less compliant phase, i.e. the fibers, to 
undergo much less deformation. The RVF 
identification however leads to more accurate 
results. It should be noted that due to the biases 
caused by the applied constrains, the accuracy of 
matrix parameters might be slightly degraded in 
RFV identification comparing with VFM, which is 
negligible. By increasing the noise level to 10%, the 
relative errors of VFM solutions are increased. As it 
can be observed, in comparison with the matrix 
phase parameters that are only slightly affected by 
noise effects, the noise level has much more 
influence on the fibers phase and less accurate 
parameters are obtained. In contrast, by applying the 
RVF method, thanks to the mechanical constraints 
effects, the accuracy of the identified properties is 
considerably improved, especially for the fiber 
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mechanical properties. It can be seen that the relative 
errors for all parameters are negligible.   

The identified elastic properties of composite B with 
higher contrast of properties using both 
identification methods are also presented in Table 3.   

Apart from the first set of results obtained from 
exact FE strain fields, in the presence of different 
levels of noises the VFM yields appropriate set of 
matrix parameters such that they are relatively close 
to the target values. The fibers properties however 
are significantly affected by increasing the noise 
level. As it can be seen, the relative errors of fiber 
properties associated to composite B is grater than 
the similar case in composite A.  This is because of 
the fact that the stiffer phase herein undergoes much 
less deformation than in composite A.    

 
Table 3. The identified parameters of composite B with VFM 
and RVF identification methods 

Properties Ef (GPa) νf Em (GPa) νm 

Targets 

Method/Noise level 

350 0.2 3.5 0.350 

VFM / FE data 

(rel. error) 

332.1 

(5%) 

0.197 

(1.5%) 

3.47 

(0.9%) 

0.351 

(0.3%) 

RVF / FE data 

(rel. error) 

342.96 

(2%) 

0.173 

(13.5%) 

3.56 

(1.7%) 

0.353 

(0.9%) 

VFM / 2% 

(rel. error) 

310 

(11.5%) 

0.165 

(17.5%) 

3.48 

(0.6%) 

0.349 

(0.3%) 

RVF / 2% 

(rel. error) 

350.1 

(0%) 

0.235 

(17.5%) 

3.54 

(1.1%) 

0.347 

(0.9%) 

VFM / 10% 

(rel. error) 

221.6 

(36.7%) 

0.342 

(71%) 

3.4 

(2.8%) 

0.336 

(4%) 

RVF / 10% 

(rel. error) 

347.5 

(0.7%) 

0.255 

(27%) 

3.45 

(1.4%) 

0.343 

(2%) 

 

It can also be observed that the RVF method is 

significantly less sensitive to noise effects and also 
yields solutions with much lower uncertainties when 
compared with VFM method.   
The same undesirable bias created by imposed 
constraints exists again herein. The matrix properties 
accuracy degradation however is negligible.  
In comparison with Regularized Model Updating 
(RMU) method [15], despite both methodologies 
leads to a rather same quality of results, the RVF 
identification is accomplished in a significantly 
lower calculation time. 

Conclusions  

In this study, a new Regularized Virtual Field (RVF) 
methodology was developed with the aim of 
improving constitutive parameters identification of 
composites in terms of accuracy and computing 
time. The novelty of the approach was that the VFM 
system of equations was solved in an optimization 
framework so that a set of mechanical constraint 
consisting of a micro-mechanical model was 
included as regularization scheme. 

For the purpose of evaluating the performance of the 
proposed algorithm, it was applied to the noisy 
measured strain fields of 2D virtual composites with 
different contrasts of constitutive phases mechanical 
properties. The efficiency of the identification 
method was compared to that of VFM in the 
presence of noise. Validation on numerical test cases 
indicates that adding mechanical constraints 
enhances the efficiency of VFM, when dealing with 
high contrast composites which inherit high-order 
heterogeneity of strain fields. Results demonstrate 
that the average accuracy of the constitutive 
parameters identified by RVF method is much 
higher than the VFM especially regarding fiber 
properties. In addition, its low sensitivity to noise 
effects directly characterizes the robustness of this 
new technique. 
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