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ABSTRACT 

Resin strength can be translated to composite strength by quantifying strain invariants of resin 
according to the Onset Theory. One of advantages that strain invariants could convey is that, as 
suggested by the term, composite performance is depicted by a pair of intrinsic properties regardless of 
the stacking sequence. The work here was carried out in order to demonstrate the process of 
homogenization/dehomogenization between micro- and macro- scale models and ultimately to employ 
the Onset Theory in the assessment of open-hole tension tests.  

For an aerospace-grade material, T800S/3900-2, a series of mechanical tests were carried out: (a) 
unidirectional 0° tensile tests, (b) unidirectional off-axis tensile tests with angles ranging from 10° to 
80°, and (c) unidirectional 90° tensile tests. Experimental evaluation was followed by 
homogenization/dehomogenization process, which was completed by computational evaluation. Using 
experimental information obtained from tests (a) to (c), computational analysis at coupon scale was 
carried out to estimate global strain components. Another analysis at the level of representative 
volume element was also performed in order to estimate the influence function that relates the strain 
components in homogenized states to the ones in dehomogenized states. With knowledge of the six 
strain components and the influence function, the dilatational and distortional strain invariants were 
computed at a critical point for use as “intrinsic material properties” by which solutions for a wide 
range of different problems are solved.   

This study was extended to further investigation in an effort to replace computational analysis with 
experimental studies that potentially minimize errors between experimental observation and 
computational aberration. Since digital image correlation provides accessibility to local strain 
components at a sub-mm scale, the technique was extensively utilized.    
 
1 INTRODUCTION 

The Onset Theory, formerly known as SIFT (Strain Invariant Failure Theory) when it was first 
introduced [1], has been popular in composite community. It was employed to analyse time-dependent 
properties of general composite laminates [2] and of open-hole compression [3]. It has been extended 
to practical applications such as sub-structural components as in Ref. [4] and [5]. Oh et al. [6] 
expanded the theory so that a random fiber array was compared to periodic fiber arrays.  

Aforementioned studies, however, heavily rely on computational evaluation in the process of 
homogenization/dehomogenization to which experimental input data are crucial. Computational 
analysis such as finite element method often leads to erroneous results due to a number of common 
reasons: incorrect/lacking data input, sensitivity to operating methods/criteria, sensitivity to meshing 
and element shape, limited computing power, or even limited capabilities of commercial packages. For 
this reason, an experimental methodology with the objective of replacement or minimization of the use 
of computational evaluation was proposed in the study of open-hole tension (OHT) failure prediction.  
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2 HOMOGENIZATION/DEHOMOGENIZATION 

The homogenization/dehomogenization process in the present study follows the original ideas 
proposed in Gosse and Christensen [1], Pipes and Gosse [7], and Buchanan et al. [8]. In these 
references, finite element analysis (FEA) is chosen as a medium to relate macro-scale strain 
components to micro-scale counterparts, following Daniel and Ishai [9]. Modeling a composite 
material, due to its two or more distinctive constituents, often leads to inaccurate estimations if its 
heterogeneity is not fully considered in modeling. Since modeling heterogeneous phases of a 
composite laminate is practically unaffordable with typical computational power, the theory suggests 
that the computational analysis be decomposed into two different analyses, coupon-scale analysis at a 
macro scale and unit-cell analysis at a micro scale. It is noteworthy that, similar to the aforementioned 
references, a composite laminate in the present study is limited to an assemblage of multiple laminae 
in which a lamina is consisted of infinitely continuous fibers impregnated with an isotropic matrix.  

The strain invariants are dilatational invariant (J1) and distortional invariant (J'2), functions of 
principal strains 1, 2, and 3: 

3211  J  (1) 
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The physical meaning of each invariant is that J1 represents volumetric change of a solid body under 
external deformation whereas J'2 represents deviatoric change. The two parameters, according to the 
Onset Theory, can characterize the strength of a material and are intrinsic material properties. Strain 
invariants of matrix resins in composites can be experimentally extracted under the assumptions that: 
(1) failure of a composite is purely matrix-dominant, (2) any sign of “yielding” is regarded as the onset 
of irreversible deformation, and (3) local strain state of matrix within the fiber bed is decidedly 
indicative of either distortional or dilatational deformation. 

 The evaluation process for the two strain invariants is briefly given in what follows. J1 and J'2 are 
measured from a series of off-axis tension tests in which unidirectional composite coupons with fibers 
aligned at a certain angle with respect to the loading axis are loaded in tension until fracture, at which 
point the failure strain is measured. It must be noted that the geometry of a coupon (typically 152.4 × 
19.05 mm2 in gage section) allows no single fiber clamped by both test grips so that composite failure 
is solely driven by matrix failure. Although testing a wide range of fiber orientation angles (10° to 90° 
with an increment of 5°-10°) is preferred, the Onset Theory suggests that 10° test for measuring 
critical distortional invariant and 90° test for critical dilatational invariant should be sufficient. For 
evaluating the distortional invariant of fiber, 0° tension testing is carried out. The strain at failure 
measured from the tests above is then fed to FEA models of off-axis tension as a boundary condition 
and local strain components are measured. In a separate FEA model where a representative volume 
element (RVE) is modeled, magnification numbers that relate prescribed strain input to strain outcome, 
known as influence functions, are evaluated. From six mechanical loading conditions, a 6×6 
mechanical influence function is extracted whereas a 1×6 thermal influence function is extracted from 
one thermal loading condition (see Ref. [8] for more details). The influence functions obtained from 
the RVE analysis are then incorporated into the FEA coupon models to evaluate “true” local strain 
components. Upon building a RVE model, two fiber arrays are typically used: the rectangular array 
and the hexagonal array. Random arrays can be considered as in Ref. [6] but consideration of random 
fiber arrays is beyond the scope of the present study. Each type of arrays produces two sets of 
influence functions since there are two constituents.  

 
3 MODIFICATION OF EVALUATION PROCESS 

In the course of the evaluation process authors encountered a number of issues especially with the 
computation. Some stemmed from limited experimental accessibility to material properties (e.g., out-
of-plane Poisson’s ratio of fiber), which is fundamental to make material libraries as input for FEA, 
and others pertained to the FEA or the commercial package authors used. These causes can be 
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In other words, for smaller-angle off-axis tension (10° to 32.5°), distortional deformation is the main 
cause for the failure whereas dilatational failure is more dominant for larger angles (35° to 90°).  

 
4 STUDY OF OPEN-HOLE TENSION 

In order to implement the developed theory in a practical situation, a number of test subjects were 
considered for the investigation. Due to a great deal of computation and experimentation anticipated, 
engineering problems that engineers encounter on a daily basis and that are of simple geometry and 
dimensions yet that could elevate complexity in analysis were envisioned for the candidates. After a 
series of benchmark tests, open-hole tension (OHT) test was selected for the current study, which is 
capable of producing straightforward data (e.g., failure stress) but also complex and even confounding 
results (e.g., near-hole nonlinearity, untimely local failure, etc.) when it is studied in greater detail. 

 
4.1 Material Selection and Preparation 

An aerospace-grade material, T800S/3900-2 manufactured at TCA, was selected for the present 
study. From the previous study, the material was found to be elastic, that is, the onset of irreversible 
damage coincides with the final failure. Therefore it is aptly categorized into materials that the Onset 
Theory is limited to cover: SIFT model covers only the onset of significant irreversible damage, not its 
propagation if failure is not instantaneous [10]. The critical dilatational and distortional strain 
invariants for T800S/3900-2 were found to be 0.02489 and 0.03434, respectively (from the previous 
chapter). These values will be measured against strain invariant distributions in a FEA OHT model in 
order to judge the failure of OHT specimen later. 

Quasi-isotropic OHT coupons were hand-laid up, debulked, cured, and machined at TCA following 
typical procedures compliant with the industry-standardized processes and specifications such as 
ASTM D5766. However, the stacking sequence was chosen so that 0° plies were placed in the mid-
plane of each specimen as opposed to ASTM D5766 in which 90° plies are instructed to be placed in 
mid-plane during layup. Although the tendency is less significant if ply thickness is low, Xu et al. 
argued [11] that quasi-isotropic layups with 0° plies in the mid-plane showed higher initial failure load 
as well as higher peak load for compact tension specimens, accompanied with a smaller damage zone 
than those with non-zero plies in mid-plane.  

 
4.2 Experimental Studies 

Ten specimens machined from two panels were tested. Black-and-white speckles were patterned on 
one side in order to enable DIC evaluation and strain gages were installed on the other side to ensure 
that they would not influence DIC readings. Collecting data from strain gages and DIC pattern 
simultaneously allows monitoring of local strain gradients as well as global strain gradients. Unlike 
the strain gage that provides strain measurement at only one point, DIC analysis offers a full-field 
measurement by which one can have flexibility of measuring strain over the entire region of interest 
(ROI). However, due to the amplitude of the noise floor of the DIC signal, DIC only measures strain 
effectively beyond 100  whereas strain gages have virtually no limitation. Therefore, for a study in 
which measuring local strain gradients and global strain gradients is sought, use of both DIC and strain 
gages is preferred. Depending on their locations, two types of strain gages were used, namely, Type I 
and Type II. Type I gages were affixed 90 mm away from the hole center to monitor far-field strain 
whereas Type II gages were affixed immediately adjacent to the hole edge (~1.6 mm) to monitor near-
hole strain.   

Strain gage measurements for two different specimens are compared in Figure 5, along with DIC 
measurement for one of the two. Type I gage measurements of far-field strain for both specimens are 
nearly identical and only show linear behavior prior to final failure. On the other hand, Type II gage 
measurements of strain in the vicinity of the hole clearly show nonlinearity for both specimens. Note 
that the plateau beyond ~3% of strain is not actual strain measurement but caused by errant signal due 
to the premature failure of strain gage. At a given load level, Type II gage measurements are much 
higher than Type I gage measurements since the strain is measured in a stress-concentrated region. Of 
special interest is what happens at the location of Type I in Figure 5, in which the strain signal shows a 
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investigated using scanning electron microscope (SEM). One of them, No. 8, is shown at the bottom of 
Figure 7. Crack growth is apparently along the profile of filaments and no fiber appears damaged. 
More importantly, no interfacial adhesive failure is observed (i.e., no fiber debonding). Therefore the 
initial failure of OHT specimens at 40% of failure load is caused by matrix failure.  

Specimens 11 and 12 revealed a similar tendency in terms of crack growth pattern, number of 
cracks, etc. However, additional information was drawn, particularly, from Specimen 11. A total of 29 
microcracks were observed over an area of 1.4 × 4.0 mm2 near the central axis, which makes the 
specimen slightly denser in the number of cracks than Specimen 13. This was anticipated since 
Specimen 11 had been loaded additional an 18% of total load past the strain abruption whereas only 1% 
additional loading had been loaded for Specimen 13. Two more microcracks were found in each 90° 
ply, far from the central axis. One of them was found approximately 5.5 mm away from the central 
axis and the other was 5.7 mm away from it.  

As seen in Specimen 13, the number of cracks for plies of the same fiber orientation is nearly 
identical and distribution of cracks in number is nearly symmetric. However, unlike Specimen 13, a 
number of cracks appeared grown half way through a ply. It appears either that such cracks were in the 
process of propagation but halted at the end of testing or that they changed the path and began growing 
out-of-plane and thus were not invisible in the micrographs. Another difference is that some of the 
cracks are connected at the matrix-rich zones but it is uncertain whether they have independently 
propagated and joined later or one of them has propagated across plies. Similarly to Specimen 13, no 
delamination was found in Specimen 11. 

In summary, the mechanical testing and visual inspection of OHT demonstrated that (1) the 
specimens, while not detectable in the far field, experience highly localized strain in the vicinity of the 
hole, (2) the vicinity of the hole, due to the strain localization, undergoes a great deal of deformation, 
(3) the resulting deformation causes microcracks of the matrix and it was detected by the strain gages 
and DIC, (4) the microcracks were evidenced by the microscopic and SEM examinations, and (5) the 
damage of the matrix was found to be cohesive.  

4.3 Computational Analysis 

In the previous section, experiment of OHT tests ensured that the composite failure was initiated by 
matrix cracking at a local scale. This was predicted by the Onset Theory such that J1 and J'2 of matrix 
at composite failure reach their critical values before J'2 of fiber reaches its critical counterparts. Since 
critical distortional and dilatational invariants for constituents are known (through a series of tests as 
discussed in Chapters 2 and 3), it would be possible to identify locations where J1 and J'2 become 
equal to or greater than the critical values if the values of J1 and J'2 induced by the local principal 
strain components – in other words, local J1 and J'2 – were known. The principal strain components, 
functions of six strain components, must be evaluated at a micro scale for this task and thus use of 
computational analysis such as FEA is inevitable. The FEA package used in this study is 
FEMAP/NASTRAN provided by NEi Software (CA, USA). 

Due to the quasi-isotropic coupon layup, fracture could propagate from the hole in four different 
directions: 0°, 90°, and ±45°. In order to account for such a multi-directional propagation, the model 
must be built such that crack potentially could grow along one of the prescribed line segments. 
However, this is not executable with a 2D model while a 3D model would provide all six strain 
components which are crucial to compute the three principal strains. For this reason, a 3D model was 
built. 

Cohesive zone allows actual separation of elements, if properly modeled, once the displacement 
reaches prescribed critical values related to mode-I energy release rate (GIc). There need to be two 
different mode-I energy release rates: through-the-thickness GIc

(t) and interlaminar GIc
(i). GIc

(t) indicates 
the maximum allowable value prior to crack initiation through the specimen thickness whereas GIc

(i) 
indicates the maximum allowable value prior to delamination. The values used in this study are GIc

(t) = 
510 N/m [12] and GIc

(i) = 631 N/m [13].  
A final load of 40 kN, which is well above the experimental failure load, was applied by 

incremental increase of load over 25 steps. The result focusing on the vicinity of the hole is shown in 
Figure 8. As seen in this image, the model with cohesive elements has room to be locally deformed 
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Figure 9. Comparison between experimental data (DIC) and computational data. Computational 
readings match the experimental readings in the far field whereas they deviate from the experimental 
readings, especially later stage of the event, at near-hole region. 
 

The current FEA model was unable to simulate the discontinuity of strain since it was built in a 
homogeneous manner. By implementing the Onset Theory, however, the model can be handled as an 
assemblage of two distinctive constituents since there are two sets of input data available, for each 
fiber and matrix as discussed Chapter 2. In the 3D analysis, strain invariants are converted from six 
strain fields. The J'2 for the matrix at a given load step is substantially higher than that of fiber. In 
other words, the matrix is subjected to higher distortional deformation that allows excluding any 
possibility that fiber fails prior to resin failure, which is in agreement with the experimental 
observation discussed in Section 4.2. For this reason, distortional failure of fiber will not be discussed 
from this point forward. Maximum J'2 was evaluated at each load step with the same 3D model in 
Figure 10. From Chapter 3, the critical distortional strain invariant for T800S/3900-2 was found to be 
0.03434. At a given load level, if J'2 of the OHT body is lower than this value, the OHT body is 
considered undamaged whereas the body fails if it is higher. From the plot in Figure 10, J'2 of the 
rectangular array becomes higher than the critical value when the load level is approximately 300 MPa 
but J'2 of the hexagonal array is still lower at the same load level and it exceeds at the next load step. 
In other words, an ideal OHT specimen packed with fibers in the rectangular array would have failed 
at the load level 300 MPa whereas an OHT specimen with hexagonal fiber array would not have failed 
until the load level reached 325 MPa. The experimental load level at which the initial failure occurred 
was 276 MPa from Section 4-2, thus the value is in between the load step 300 MPa and the previous 
step. This is in agreement with the observations from the computational results, especially for the 
rectangular array. Considering the large increment of load steps (27 MPa in this study) and a scatter of 
experimental load level (5% of coefficient of variation), the present model is capable of predictions 
with a high accuracy. 
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Figure 10. Distortional invariant (J'2) as a function of applied stress in the OHT analysis. 
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4.4 Discussion 

In the course of theory validation and application, it was found that FEA exhibited certain 
limitations such as fiber arrays being limited to periodic arrays and/or inability of FEA to handle 
localized stress/strain among other limitations. In order to study the current problem more reliably, a 
testing technique, dual-DIC system, was added to the existing testing method, which permitted 
calculation solely relying on experimental data. Two DIC systems monitor an off-axis tension 
specimen simultaneously: one monitoring a first plane and the other monitoring a second plane 
orthogonal to the fist. With this setup in addition to the fact that DIC offers full-field strain 
distributions, one can measure all necessary local strain components experimentally. Another 
advantage of this approach is that it can eliminate an FEA unit-cell analysis. The purpose of unit-cell 
analysis is to compute influence functions that relate local strain components of homogeneous body to 
local strain components of heterogeneous body to adjust mismatch caused by heterogeneity of 
composite materials. Experimental data, on the other hand, already reflect heterogeneity since they are 
phenomenological.  

For example, in an off-axis tension test to which a uniaxial loading is applied, both DIC and FEA 
produced somewhat similar values for two major contributors, yy (in-plane normal strain in loading 
axis) and xy (in-plane shear strain on the xy plane). However, the third contributor, xx (in-plane 
normal strain perpendicular to the loading axis), was largely different. DIC produced a negative value 
whereas FEA produced a positive value. For the uniaxial tensile loading, a lateral contraction must be 
accompanied with longitudinal extension. In other words, both xx and zz (out-of-plane normal strain 
perpendicular to the loading axis) should be negative which is in an agreement not with computational 
data but with experimental data. 

 
5 CONCLUSIONS 

The principles of the Onset Theory were adapted in a study of OHT. Instead of using numerical 
methods, a new technique using a dual-DIC system was employed and the critical strain invariants for 
a high-grade composite material, T800S/3900-2, were evaluated. In the study of OHT, however, this 
technique cannot be directly employed due to the technical challenges. For this reason, the influence 
functions for the material with two hypothetical fiber arrays were computed using unit-cell analyses.  

Through a series of OHT tests, it was found that OHT specimens locally failed at a low load level 
(43% of failure load) within the matrix body and it was hypothesized that this initial failure would be 
due mainly to cohesive failure of the matrix. It was later confirmed that matrix was indeed damaged 
cohesively under photographic examination by optical microscopy and SEM.  

With the evaluated critical strain invariants and test results of OHT, 3D FEA analysis was carried 
out for OHT. The analysis was correctly able to identify the stress level at the initial failure especially 
for the OHT with rectangular fiber array. 
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