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ABSTRACT 

Resorcinol-formaldehyde based aerogel precursors were infused into structural carbon fibre 

weaves, then gelled and carbonised to generate a continuous monolithic matrix network. This 

hierarchical carbon preform was subsequently infused with polymeric resins, both multifunctional and 

structural, to produce dense composites. The resulting hierarchical composites have a nanoscale 

reinforcement in the matrix at up to an order of magnitude higher loadings than typically available by 

other techniques. Compression, tension, ±45° shear and short beam tests demonstrate the potential of 

such matrix systems to address matrix dominated failures. However, for the best structural 

performance it will be necessary to re-optimise the fibre-matrix interface, which is degraded by the 

current processing regime. 

 

1 INTRODUCTION 

The performance and application of polymer-matrix fibre composites is often limited by 

matrix-dominated failures, both mechanical and functional. There is, therefore, considerable interest in 

the use of nanocomposite matrices, for example using resins filled with carbon nanotubes or graphene, 

to introduce both intralaminar and interlaminar reinforcement of the resulting hierarchical composites. 

The objective is to improve delamination resistance, through-thickness properties, and compression 

performance, without compromising the in-plane tensile response. The potential to improve thermal 

and electrical conductivity, as well as solvent resistance and fire retardance, offers additional 

opportunities. Improvements in fatigue performance or lightning strike resistance would be especially 

appealing. Although some promising results have been reported, processing constraints typically limit 

the nanoreinforcements to low loading fractions and discontinuous formats, limiting the level of 

enhancement achieved [1]. Broadly, two strategies have been followed: the first is to load discrete 

nanofillers into conventional resins, followed by conventional processing. This approach works well at 

low loadings, but viscosity increases rapidly at modest loadings (above ~1 vol%), especially for high 

aspect ratio particles (such as nanotubes, rods, and platelets) preventing simple infusion approaches. In 

addition, self-filtration effects against the primary fibre constructs create inhomogeneities within the 

resulting composites. The second approach involves coating or grafting nanomaterials to the surface of 

the primary fibres before introducing a conventional matrix. This approach works well, particularly for 

modifying the fibre-matrix interface, and may provide an idealised orientation of the nanomaterial; 

however, the absolute nanomaterial content remains low, primary fibres may be damaged in the 

grafting process, and thicker coatings may limit the absolute volume fraction of primary fibres in the 

final composite.  

 

This paper exploits an alternative strategy to form a rigid bicontinuous reinforcing network 

throughout the matrix volume. A suitable precursor is first infused into a structural fibre weave or 

other preform, then converted to form a porous monolithic aerogel/xerogel matrix, with characteristic 
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lengthscales around a few tens of nanometres. The presence of the reinforcing fibres allows the 

aerogel/xerogel to form a stable, handleable, structure. Both the rigid network and the porosity are 

bicontinuous, allowing a second matrix resin phase to be infused. This second phase may be a soft 

multifunctional phase; for example, one that can support ion conductivity for use in structural 

supercapacitors and other related applications. Alternatively, it can be a conventional structural epoxy 

resin, to address the types of matrix dominated failures mentioned above [2]. 

 

2 EXAMPLE SYSTEMS 

 

2.1 Carbon aerogel matrices 

Carbon aerogels (CAGs) are widely used for their high surface area and electrical conductivity, 

particularly in the context of electrochemical electrodes and devices. The most common variety are 

formed by condensation, stabilization and subsequent carbonization of resorcinol-formaldehyde (RF) 

mixtures, to yield a network structure of amorphous carbon. Usually CAGs are used in powder form, 

as monolithic precursor gels typically fragment due to internal stresses during processing (see Figure 

1). However, it has been shown that embedding non-woven carbon fibre felts within the gels stabilizes 

them during subsequent processing, allowing large monoliths to be obtained to make effective 

electrochemical electrodes [3][4]. We have explored this idea further using a variety of woven 

structural carbon fibre arrangements and found that (semi-)structural laminates can be prepared [2]. 

The production of such laminates was successfully scaled by adapting conventional composite 

processing, specifically, using resin infusion under flexible tooling (RIFT) to introduce a RF precursor 

mixture (AX2000, INDSPEC Chemical Corporation) into the carbon fibre weave. After gelation (at 45 

°C and 70 °C), the sample is dried, and carbonized (at ~760°C under inert atmosphere) to form a 

hierarchical reinforcement preform (Figure 2), with a bicontinuous nanoporous matrix, uniformly 

surrounding the primary reinforcing carbon fibres. The CAG forms a rigid continuous monolithic 

matrix in which the carbon fibres are embedded (Figure 3) and contributes around 10 wt% to the 

sample; the surface area of the CAG component alone is typical of such materials at around 700-800 

m
2
g

-1
, with pore sizes of a few tens of nanometres. This preform is then infused via a second RIFT 

cycle with the desired polymeric matrix resin system to form a dense composite. 

 

  

Figure 1: Carbon aerogel-monolith (approx. 1 cm): stabilized precursor (left) and after pyrolysis 

(right), showing spontaneous fragmentation in the absence of reinforcing fibres. 

Initially, the carbon aerogel-carbon fibre (CAG-CF) preform was infused with a non-structural 

resin, polyethylene glycol diglycidal ether (PEGDGE) which was known to exhibit reasonable ionic 

conductivity [2] when combined with ionic liquid or other electrolyte salts. The purpose was to 

provide a multifunctional matrix systems for structural supercapacitors; results were encouraging 

although further development is requirement to deliver practically useful power densities [5]. On the 

other hand, the PEGDGE matrix modulus is low (~6 MPa [2]), and hence the resin is unsuitable for 

(b) CAG-monolith

(post pyrolysis)
(a) CAG-monolith-precursor
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pure (monofunctional) mechanical applications. To investigate whether the CAG network can act as a 

useful reinforcement, the same types of CAG-CF preforms were infused with a conventional epoxy 

matrix (Gurit PRIME 20ULV, modulus ~3 GPa [6]) to generate pure structural systems [2]. 

 

  

Figure 2: Carbon aerogel-carbon fibre (CAG-CF) preform production. 

 

 

Figure 3: Scanning electron micrographs of CAG-CF, infused with 40 wt% RF solution, showing 

T300 carbon fibres (3k, 5-satin-harness weave, 283 gm
−2

, Cytec Engineered Materials) embedded in 

CAG (left) and detail of the CAG nanostructure (right). 
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The mechanical performance was first examined using ±45° shear tests (ASTM Standard 

D3518 [7]) in order to explore the response of the matrix (Table 1). The shear strength and the shear 

modulus of both multifunctional and structural epoxy matrices increased. Unsurprisingly, the soft 

PEGDGE system is most dramatically improved; however, it is striking that even the structural epoxy 

is apparently enhanced, particularly its shear modulus. To explore whether these improved matrix 

characteristics translate into improved overall composite properties, specifically improved resistance 

to microbuckling, a fresh set of samples were prepared, and tested in compression (Table 2). Again, 

the soft PEDGE matrix shows significant improvements in strength and stiffness. The structural matrix 

also shows a significant improvement in modulus; however, there is a significant decrease in 

compression strength. In tension (ASTM Standard D3039 [8], Table 3), a similar trend is observed.  

The original of this decline in strength for the structural PRIME resin, is indicated by the 

interlaminar shear strengths (ILSS), obtained by short beam shear measurements (ASTM Standard 

D2344 [9]), and the associated fractography. The value of the ILSS drops from around 60 MPa to 

43 MPa on introducing the CAG into the CF weave. In SEM micrographs, cusps and matrix ductility 

were observed in the baseline PRIME system, but there were a larger proportion of smooth fibre 

imprints in the CAG-containing samples (Figure 4). In addition, in the CAG samples, the cusps were 

more block-like and had fewer tufted feet features than in the control, which is consistent with a 

poorer fibre/matrix interface [10]. The heat treatment involved in carbonizing the CAG precursor, can 

be expected to remove both sizing and surface oxidation from the CFs. The resulting lack of chemical 

interaction with the subsequently infused resin may be the source of the degraded fibre/matrix 

interface, and hence mechanical properties.  

 

Reinforcement Matrix 

Shear 

Strength 

(MPa) 

Shear 

Modulus 

(MPa) 

Volume fraction of 

fibre reinforcement 

(vol%) 

As-received 
DGEBA- 

based epoxy 

25.9 ± 2.2 4380 ± 60 45.0 

CAG-modified 26.2 ± 0.5 5050 ± 210 40.7 

As-received 
PEGDGE-

based epoxy 

5.83 ± 0.14 201 ± 10 47.2 

CAG-modified 8.88 ± 0.12 911 ± 60 42.0 

Table 1: In-plane shear response tensile test on ±45° monolithic laminates [2] with woven carbon fibre 

fabrics (HTA, 3k, plain weave, 200 gm
-2

, TISSA Glasweberei AG), ASTM D3518. 

Reinforcement Matrix 

Compressive 

Strength 

(MPa) 

Compressive 

Modulus 

(GPa) 

Volume fraction of 

fibre reinforcement 

(vol%)  

As-received 
PEDGE- 

based epoxy 

50.4 ± 3.8 16.6 ± 1.5 57.1 

CAG-modified 
174.8 ± 9.2 

(3.47-fold) 

60.5 ± 3.6 

(3.65-fold) 
55.7 

As-received 
PRIME-

20ULV epoxy 

535.7 ± 52.2 65.4 ± 5.1 56.3 

CAG-modified 
345.2 ± 29.2 

(35.6% decrease) 

80.6 ± 4.5 

(23.2% increase) 
56.5 

Table 2: Longitudinal compression test on monolithic laminates in a 0°/90° lay-up with woven carbon 

fibre fabrics (HTA, 3k, plain weave, 200 gm
-2

, TISSA Glasweberei AG), ASTM D3410. 
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Reinforcement Matrix 
Tensile Strength* 

(MPa) 

Tensile Modulus* 

(GPa) 

As-received 
PRIME-

20ULV epoxy 

717.2 ± 3.8 55.2 ± 0.6 

CAG-modified 
398.7 ± 6.9  

(44% decrease) 

63.6 ± 0.5  

(15% increase) 

* normalised to 55 vol% 

Table 3: Tensile test on monolithic laminates in a 0°/90° lay-up with woven carbon fibre fabrics 

(HTA, 3k, plain weave, 200 gm
-2

, TISSA Glasweberei AG), ASTM D3039. 

 

 

Figure 4: Scanning electron micrographs images of ILSS fracture surfaces for HTA plain weave 

specimens, showing features associated with poorer fibre matrix interfaces for CAG-CF samples 

(right) than the original CF control (left). 

 

3 CONCLUDING REMARKS 

The preparation of continuous nanostructured aerogels or xerogels as matrices for 

structural reinforcing fibres is provides an exciting new strategy for enhancing both 

mechanical and physical performance, using a relatively high loading of nanostructured 

material. The bicontinuous nature of the structure maximizes the constraint offered by the stiff 

phase (for example, as compared to the use of dispersed nanoparticles), whilst maintaining the 

continuous network of tougher polymeric resin. Such systems can be prepared at reasonable 

scale, using adaptations of standard composite processing techniques (RIFT); requiring only a 

second iteration to introduce the additional matrix phase. We have successfully demonstrated 

that curved CAG-CF composites can be produced, in the context of creating a structural 

power body component for a model car [5]. Unsurprisingly, the relative improvements in 

mechanical performance are greater for the softer baseline matrices, which have immediate 

relevance to multifunctional composites [2]. However, there are suggestions that absolute 

mechanical performance of structural systems may also be improved. It is clear from shear 

tests that the intrinsic performance of the matrix system is improved. Tension and 

compression tests confirm an enhanced modulus. The remaining challenge relates to the 

reduced strength which can be attributed to degradation of the fibre/matrix interface. 

Optimisation of this interface, for example using gas phase modification chemistries, may 

resolve the current issues, and allow an improved overall performance. In any case, 

improvements in electrical conductivity, thermal diffusivity, solvent resistance, and other 

matrix dominated properties can also be anticipated. The general strategy can be extended to 
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other aerogel/fibre systems, as we have already explored for combinations of glass fibres with 

silica aerogels, with promising results; in this case the high temperature treatment and 

associated desizing is avoided, and a strong fibre-matrix interface can be anticipated.  
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