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ABSTRACT

The development of innovative materials is a base technology for the development of novel compo-
nents preserving energy and resources. Composites allow for tailoring the desired materials properties
beyond the performance of bulk materials. Nevertheless, the reliable design and construction of com-
ponents made from composite materials needs profound knowledge about the damage mechanisms. To
develop reliable material and damage models, a detailed characterization and a physically defined
description of the mechanics of the composite materials is of major importance. For metal matrix
composites the reinforcement of a relatively soft matrix material with hard particles is state-of-the-art.
A novel approach for such composites presented by the authors is the use of metallic glass particles.
Up to now, such composites have been predominantly produced by powder metallurgy, but increasing
the crystallization temperature of metallic glasses, i.e. in the system NiNbX (X=Sn,Ta), allows for
liquid metal infiltration to produce metallic glass reinforced metal matrix composites (MMCs).

In this contribution, investigations on the micro crack evolution in MMCs reinforced with metallic
glasses made from the above-mentioned alloys are presented. As the glass is manufactured as thin
ribbons in a melt-spinning process, the particle architecture is a plate-like one resulting in notch effects
on the plate edges as the particles are made by grinding the ribbons. In fact, the potential influence of
this effect on the damage behavior of these composites is investigated in this contribution by means of
in-situ characterization of the composites under compression. This method allows for detecting the
sites of micro crack initiation in the composite’s microstructure and observing the crack propagation
under quasi-static loading conditions. The results from the materials characterization are compared to
numerical experiments. A dislocation-based continuum model is adopted to the microstructure and
allows to investigate the interaction between the hard amorphous particles and the surrounding alumi-
num matrix. Local stress concentrations are analyzed which occur in these composites due to inhomo-
geneous dislocation movement and hence cause plastic deformation and crack initiation in the compo-
site material.

1 INTRODUCTION
1.1 MMCs based on metallic glasses

Metallic glasses have already been known for their outstanding properties since several years. Elas-
tic strain limits up to 2 % [1] and high strength values (~ 3 GPa for Ni-based [2], ~ 4 GPa for Fe-based
[3] and ~ 5 GPa for Co-based [4] metallic glasses) were reported in various studies. But industrial
application of metallic glasses is mostly limited due to their brittleness [5]. By incorporating the metal-
lic glasses as reinforcements in metal matrix composites (MMCs), brittleness can be averted by sur-
rounding plastic flow within the matrix materials as it has already been reported for ceramic rein-
forcements [6, 7].

Newly developed Ni-based metallic glasses exhibit high thermal stability and crystallization tem-
peratures up to 994 K [8]. Therefore, they offer high potential for being embedded as reinforcements
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in lightweight metal alloys not only by sintering methods but now also by melt infiltration since crys-
tallization temperatures are higher than melting temperatures of several lightweight alloys. In the infil-
tration process, a preform or mold filled with particles or fibers is infiltrated with a molten metal. Re-
cent studies show that production of MMCs with structures of metallic glass by melt infiltration is
possible without crystallization of the glass [9, 10]. Furthermore, these studies present that the compo-
sites offer higher strength values than the bulk matrix material regardless of processing method [9, 10,
11].

The reinforcing effect of metallic glass is likely to be supported by the good interfacial bonding be-
tween the metallic glass and the metallic matrix material. Cytron et al. showed that 180° bending tests
lead to cracks within the metallic glass but not in the interface. SEM investigations of metallic glass
particle reinforced MMC samples after a compression test presented by Scudino et al. [13] display
several damage mechanisms. In their study, fracture appears parallel to the compression direction in
the reinforcing particles while large plastic deformation with dimple rupture takes place in the Al-
matrix.

Within the present study, in-situ compression tests within a SEM chamber will be performed for a
detailed investigation of the damage evolution in metallic glass particle reinforced MMCs produced by
gas pressure infiltration. The results of the damage analysis are then compared to predictions based on
a dislocation-based continuum model.

1.2 Dislocation-based continuum models

The growing interest in physically motivated continuum models of plasticity has led to renewed
efforts to formulate continuum theories of dislocation kinematics and dynamics. The classical continu-
um theory of dislocation based plasticity, which is based on the definition of a second-rank dislocation
density tensor, was introduced by Kroner [14] in the 1950s. However, the classical density tensor only
captures some aspects of plastic deformation processes. Introduced as a measure of the averaged plas-
tic deformation state to link the microscopically discontinuous deformation state to a macroscopically
continuous deformation state, the classical density tensor just considers the dislocation content in an
averaging volume and thereby only accounts for geometrically necessary dislocations (GNDs) and
does not account for statistically stored dislocations (SSDs).

In order to solve this problem, the classical model has been extended by Hochrainer et al. [15] by
means of a geometrical description of dislocation lines and their averages under consideration of a
higher dimensional configuration space. They give the mathematical foundations for using the meth-
ods of statistical mechanics consistently with three-dimensional systems of curved dislocations. This
higher dimensional continuum dislocation dynamics theory (hd-CDD) relies on a geometrical descrip-
tion of dislocation lines and their averages, i.e. line densities, which uses the methods and formalisms
of differential geometry. The theory is a direct generalization of Krdner's classical continuum theory,
which is contained as a special case. Having formulated the kinematic problem, one can combine hd-
CDD with a constitutive relation for the dislocation velocity, as demonstrated for simple systems in
Schulz et al. [16].

In recent years, composite materials have gained increasing attention. To understand the complex
material behavior of solids with more than one phase, Van der Giessen et al. [17] analyzed a two phase
composite using a discrete dislocation dynamics model. They simplified the system as a 2D plane
strain problem considering edge dislocations on parallel slip planes only. Slightly different systems
based on discrete dislocation analyses have been presented by Cleveringa [18, 19] and Schwarz et al.
[20]. A comparison of a nonlocal statistical-mechanics model with the discrete results of Cleveringa
[18, 19] is given by Yefimov et al. [21].

In this paper, we discuss the numerical continuum formulation based on the mathematical model
given in Hochrainer et al. [22] by applying it to a composite material. We thereby show that we can
reproduce the plastic material behavior considering different boundary conditions and we are able to
represent the dislocation pile-up at the interfaces. Beyond we show the influence of the shape and
position of the inclusions on the evolution of the plastic slip.



20™ International Conference on Composite Materials
Copenhagen, 19-24™ July 2015

2 EXPERIMENTAL
2.1 Specimen material

The metallic glass particle reinforced MMC experimentally investigated in this study was fabricat-
ed by gas pressure infiltration. Aluminum alloy AlSil2 was used as matrix material and metallic glass
NigoNbygTayg particles as reinforcements. The metallic glass particles were prepared by milling of thin
melt-spun ribbons. Therefore, the used particles exhibit a platelet-like shape with a size range of 0.6 to
~ 2 mm and a thickness of ~ 50 um.

For processing, an alumina crucible with a graphite mold filled with glass platelet was placed into
the infiltration chamber together with ingots of AlSil2. After evacuation and several intermediate
Argon flushing steps, the infiltration chamber was heated to the processing temperature T, = 660 °C.
This temperature was held for two hours. Thereafter, infiltration pressure of 40 bar Argon was applied
and held while cooling down the infiltrated sample. As presented in [10], this results in a metallic glass
particle reinforced MMC without crystallization of the metallic glass. The average volume content of
metallic glass platelets in the MMC was determined to 12.1 vol.% via Archimedes’ principle method.
For a more detailed description of the gas pressure infiltration process, device and processing parame-
ters and the composite material, the authors refer to [23] and [10].

2.2 Mechanical testing and microstructural investigations

The damage mechanisms of the presented metallic glass particle reinforced MMC were investigat-
ed under compressive load. The mechanical tests were carried out inside a scanning electron micro-
scope (SEM) chamber for direct observation of microstructural changes while testing. This allows for
accurate determination of the failure mechanisms though obtained information is limited to the speci-
men surfaces.

Compression tests were performed using a miniature mechanical testing device by Kammrath &
Weiss GmbH (Dortmund, Germany) with maximum load capacity of 10 kN. Elongation was measured
by the displacement of the crossheads. All experiments were performed with a fixed crosshead veloci-
ty of 2 um/s which corresponds to a nominal strain rate of approximately 107/s. In-situ investigation
of the damage mechanisms was carried out in a Zeiss EVO 50 scanning electron microscope (SEM).
Stopping the mechanical tests at different loads allowed for detailed examination of the damage mech-
anisms and the damage evolution of the MMC.

Rectangular parallelepiped testing samples with a side length of ~2 mm were used for the compres-
sion tests. The samples were prepared out of the infiltrated specimen by electrical discharge machin-
ing. All samples were grinded with SiC paper with 4000 abrasive grit and water as coolant. After-
wards, the samples were polished with 3 pm diamond suspension for sufficient surface quality.

Within the composite, the platelets mostly seem to be oriented perpendicular to the infiltration di-
rection due to the plate-like shape of the particles as shown in [10]. Compression tests in the present
contribution were carried out along the platelet orientation (cf. Figure 1).

3 MODELLING
3.1 Dislocation-based continuum model

The idea of the continuum dislocation dynamics (hd-CDD) model is that dislocation lines can be
distinguished according to their line direction 1. This assumption enables us to include not only geo-
metrically necessary dislocations but also statistically stored dislocations, which, considering an aver-
aging volume, do not have the same orientation. Provided that dislocations move by glide only, we
introduce the orientation angle ¢ between the line direction and the Burgers vector b. With this angle,
a point r of a dislocation is characterized by (r,9). For every dislocation curve c=(c1(s), c2(s)) (straight
or curved), which is parametrized by the arc length s, we now get an artificially lifted curve
C(s)=(CI1(s), C2(s), C3(s) ):=( c1(s), c2(s), 9(s)) in the three dimensional configuration space. Here the
1-direction points into the direction of b and the glide plane is spanned by the 1- and 2-direction. An
important feature of the hd-CDD model is that in the following we average over these lifted curves.
The tangent of the lifted curve is given as
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Here, we derive as third coordinate the curvature k(s) of the curve c. Similar to the classical disloca-
tion density tensor a, given by Kroner [14], we introduce a dislocation density tensor of second order
ag.'(p), with "

“g,cp):(Zc o ®b),

considering the lifted dislocation curves in an averaging volume. This expression can be replaced by

the product of the generalized line direction L(r,(p) = l((p), k(r‘(p) in the higher order configuration
space and a dislocation density function P(r,p) 3
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According to the classical continuum approach, the fundamental condition div aﬁ,@f 0 has to be

fulfilled in hd-CDD which ensures that no dislocation lines start or end inside a crystal. This condition
can be rewritten as cos @ d,p + sin@ d,p + d,(p k) = 0.

The evolution of the density tensor aélr,q,) can be obtained as 0, ag’(p) = —curl(V(r_(p) X
aé’r,(p)). Here, the vector V ;. ) = (V(r’(p), 19(”,,)) denotes the generalized velocity in the configuration
space, which is perpendicular to the generalized line direction. v, ,) describes the spatial velocity and
9 r,¢) the rotational velocity, respectively. Assuming that dislocations move on glide planes only, we
can replace the evolution of ag’(p) by two scalar evolution equations for the dislocation density p(r, ¢)
and the mean curvature k(r, @) of the dislocation lines.

— (div (pv)+3d,( 19)) + pvk
—vk? + VZ(9) — Yy

0tp
dck

Whereas v denotes the spatial velocity, v here represents the scalar velocity of a dislocation segment.
V, and V? describe the first derivative along the generalized velocity and the second derivative along
the generalized line direction, respectively.

The evolution of the plastic distortion BP! can be derived by an integral over the angle ¢ as

21
9,pP = f Pre) Vi p)dep @b
0

which is similar to the Orowan relation. For a more detailed description see Hochrainer et al. [22].

In order to provide an effective analysis for a broad range of applications, the computation time and
storage capacities of the higher dimensional continuum theory can't be neglected. A number of
benchmark tests showed that the hd-CDD theory is computationally intensive caused by the high
amount of degrees of freedom. Thus there might be the need of a reduction of degrees of freedom at
preferably same performance in order to have the chance to consider larger and more complex sys-
tems. In the following analysis we use a simplified version of CDD. By partially integrating the gov-
erning evolution equation of the higher order theory, we decrease the number of unknowns per glide
system. At this, we obtain the internal variables from integration over the orientation space, character-
ized by the angle ¢. Thus, for a single glide system, the total dislocation density pt is derived by
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P(tr) = j p(r,q))d(p-
0
As part of the total dislocation density, the density of the geometrically necessary dislocations pVP is
introduced. It holds
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For brevity, in the following we only state the resulting evolution equations for a glide plane which
depends on x only. The evolution equations for pt and p®NP are given as
0,p"? = 0y p'v
0ept = — 0, (wp"P) + v p'k

with the scalar dislocation velocity v and the mean curvature k of the dislocation lines. The term in-
cluding the curvature accounts for the change of the density due to expansion or shrinking of disloca-
tion loops. The evolution equation for k we can write as

t GND GND
pt—p
0 v +

Ok = —vk? = =

(ko,v — v, k)

pt

The plastic slip y on the slip plane causes a plastic distortion of the crystal. This plastic distortion can
be written with the sum over all slip planes as BP! = Y y,/bs * (n®b) . The evolution of the plastic
slip we derive as 0,y = p'b v. Although we only use the case of k=0 for the numerical examples in
this paper, cp. Groma et al. [24], a general 3D consideration with k # 0 is straight forward.

3.2 Finite element approximation

We implemented the dislocation based continuum model into a finite element code using quadri-
lateral four node elements with bilinear shape functions. According to the simplified kinematic as-
sumption of small strains, the presented numerical analysis is geometrically linear. We imply an addi-
tively decomposition of the strain tensor by £ = £ + &Pl

Regarding the constitutive equations, it holds ¢ = C: e® = C: (8 - £pl). The fourth order tensor
C here denotes the three dimensional elasticity matrix. CDD is combined with the dislocation velocity
v. We use a linear-viscous model of overdamped dislocation motion, in which the dislocation velocity
v depends on the difference between the local shear stress T and the local yield stress 7,,. With the
drag coefficient B for the dislocations, the velocity law holds

= b B~tsign(D)(|t| —1y) if It] > 1y
B 0 otherwise}

Herein, the yield stress 7, = aGb \/ﬁ depends on a geometry-dependent parameter a ~ 0.4 charac-
terizing the strength of dislocation forest interactions, the shear modulus G, the Burgers vector b, and
the total dislocation density. With the external stress 7,,; and the internal stress t;;,;, including e.g. the
backstress T, = DGb (9, p®NP /p?), cf. Zaiser et al. [25], considering the repelling effect of disloca-
tions with same orientation, the shear stress can be derived by T = 7,y — Tj. Regarding the slip
planes, which dislocations move on, we introduce representative slip planes, considering a bundle of
parallel nearby slip planes. Therefore we choose a multi-scale approach with a finite difference (FD)
scheme for approximating derivatives on the slip planes and a finite element (FE) mesh for the struc-
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tural analysis. Hereby, the external stresses are projected from the FE mesh to the FD scheme as well
as the stresses, arising from the motion of dislocations in the other direction. For the numerical time
integration of the evolution equations we use an explicit forward Euler scheme in order to avoid addi-
tional history variables and to procure a fast computation.

4 RESULTS
4.1 In-situ compression tests

Figure 1 shows the compressive stress-elongation plot of an infiltrated metallic glass reinforced
MMC sample tested along the platelet orientation (cf. Figure 1 (right, a)). The initial curved shape of
the plot at small stresses can be attributed to friction between the sample and the punches and to the
deviation of the sample geometry from perfect parallelism. The slope of the MMC increases steeply
and changes over to almost ideal plastic deformation behavior. The tips within the plot mark stopping
points of the compression test for SEM investigation of the damage evolution. The letters in the plot
correspond to the letters on the micrographs which are presented in this contribution (cf. Figures 2 and
3). The test was terminated at the elongation of 200 um when macroscopic cracks and massive plastic
deformation were observed as shown in Figure 1 (right, d).
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Figure 1: Compressive stress-elongation plot of an infiltrated metallic glass reinforced MMC sample,
tested under uniaxial compression along the platelet orientation (left) and micrographs of a sample
before (right, a) and after the compression test (right, d).

The SEM micrographs of the damage evolution at different loading steps are presented in the fol-
lowing. Metallic glass platelets appear as bright lamellae-like structures in the surrounding darker
matrix metal. As the actual composition of the matrix alloy is hypereutectic, the matrix consists of an
irregular eutectic microstructure with silicon primary crystals.

Figure 2 shows two SEM images which present an overview of the microstructure of the metallic
glass particle reinforced MMC at different stages of the compression test. At stopping point (b), the
microstructure of the MMC seems to be almost completely undamaged with no macroscopic defor-
mation. Several microscopic cracks, which are marked with arrows in the micrograph (Figure 2 (b)),
can be observed in this picture. With further elongation, the existing cracks within the matrix material
get larger and wider, macroscopic crack propagation appears within the matrix and new cracks are
generated in the metallic glass platelets. The new cracks are marked with arrows in Figure 2 (c). Fur-
thermore, a concentration of plastic matrix deformation can be observed at the edge of a metallic glass
platelet as shown in detail in Figure 3 (c¢) resulting in the formation of extrusions. The image shows
that the metallic glass platelet cracked close to the extrusion and that there is crack propagation in the
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interface between platelet and matrix material.

At the end of the compression test at point (d), macroscopic crack formation around the extrusion
is observed as shown in Figure 3 (d). The existing cracks in the platelet and the interface got larger and
wider with further elongation.

Loading direction

Figure 2: Damage evolution in the metallic glass particle reinforced MMC at different steps of the
compression test — overview.

Figure 3: Development of extrusions due to dislocation pile-up at high loads and elongations — de-
tailed micrographs at different stopping points of the compression test.

4.2 Modelling

We model a simplified composite material, consisting of a plastically deforming matrix and stiff

inclusions (corresponding to the metallic glass platelets), which are impenetrable for dislocations.
Hereby we concentrate on different boundary conditions, occurring dislocation pile-up effects, and the
influence of the shape of the inclusion.
According to the dislocations, we model the boundary conditions with smooth boundary functions for
the dislocation density p and the dislocation velocity v. These functions decay for the case that the
boundaries are impenetrable for dislocations. For simplicity we focus on simplified material partitions
of the composite, see Figure 4.
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Figure 4: Simplified composite structure with different cutoff systems and variation of the inclusion
geometry.

We differentiate between three geometries and analyze a matrix incorporating a single particle
(System I), a matrix with five not overlapping particles (System II), and a matrix with five overlapping
particles (System III). The quadratic systems has an edge length 1, =l;y = 0.625- I, = 0.625- 1,y =2 um.
The material parameters for the isotropic aluminum matrix are given with the elastic modulus E=67.6
GPa and the Poisson's ration v=0.3. For the inclusion it holds E*¢ = 7.3 - E and v"“=v/2. Parallel to
the x axis, we assume a homogeneous distribution of 100 glide planes over ly and a Burger's vector
b,=0.2864 nm. By applying a prescribed displacement u,/2 at the upper and the lower boundary, we
subject the composite to a total shear deformation of u,=2 nm. Regarding the dislocation microstruc-
ture, we assume an initial configuration of statistically stored straight edge dislocations (SSDs) only.
The total dislocation density is assumed as pg = 1013 m™, the geometrically necessary dislocation
density and the curvature vanish, pgnp=k=0. The system is modelled by using 32 x 32 elements for the
FE mesh and 1000 elements for the FD scheme along the slip planes.
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Figure 5: Contour plots of plastic slip for different boundary conditions on the left and right edge:
periodic (left) mechanically free, impenetrable for dislocations (right).
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Considering System I, a stiff inclusion with a width w=1,,/8 and a height h=1,,/4, which is impene-
trable for dislocations, is embedded into the aluminum matrix. The results of the distribution of the
plastic slip y regarding different boundary conditions for the numerical system are shown in Figure 5
with respect to the symmetry line at 1,/2.

Figure 5 (left) shows the plastic slip incorporating periodic boundary conditions for the mechanical
degrees of freedom and for the dislocations. Mimicking grain boundaries, Figure 5 (right) gives the
results for mechanically free edges and impenetrable boundaries for the dislocations. This inserts a
strong inhomogeneity. Here, we recognize an accumulation of plastic strain above and below the in-
clusion.

Starting with SSDs only, we observe an increasing amount of geometrically necessary dislocation
density. Considering periodic boundary conditions at the left and the right border, the diagrams in
Figure 6 depict the evolution in time of p and penp at a cut through the middle of the system at I /2,
respectively.
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Figure 6: Evolution of the total (left) and the geometric necessary (right) dislocation density in time.
Cut through the middle of the system at 1,/2.

For the results of the total dislocation density in Figure 6, we recognize a decreasing dislocation
density in the field and a pile-up in the vicinity of the inclusion. In Figure 6 (right), the geometrically
necessary density start with pgyp =0 and increases with the evolution. Finally, we observe pile-ups of
opposite sign at the left and the right interface to the inclusion.

If we change the shape of the inclusion, keeping a constant volume fraction (hl - wl)/(ly, -
l1,) = 0.0625 and vary the dimensions h; and w; of the inclusion, the system behavior also changes.
The diagram in Figure 7 shows the external stress - plastic strain behavior for different inclusion
shapes.
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Figure 7: Stress-strain diagram with variation of the inclusion shape at constant volume fraction of the
inclusion.
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Here, we choose the averaged value of the plastic slip y,, with y,,= % ) , Y dA as representative pa-

rameter for the plastic strain. Neglecting the elastic part by t,=0, the results show a linear hardening
behavior depending on the inclusion height.

Changing the cutoff of the material and analyzing a system incorporating five inclusions (System
II: w=l,,/3 and h=l,,/3; System III: w=1,,/4 and h=I,,/2), the inhomogeneity of the dislocation distri-
bution increases. Figure 8 depicts the results for System II and System III showing the distributions of
the geometrically necessary dislocation density and the plastic slip.
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Figure 8: Distribution of the geometrically necessary dislocations and the plastic slip for System II
(left) and System III (right).

It can be seen, that the more the paths of the dislocation motion are hindered, the stronger are the
dislocation pile-ups, which causes stress concentrations.

4 DISCUSSION

The present results indicate that damage evolution of metallic glass particle reinforced MMCs pre-
sented in this study occurs in several steps and that the inherent damage mechanisms differ. Experi-
mental investigations showed that first cracks form within the matrix material starting at silicon prima-
ry crystals. These cracks get larger and wider with higher elongations and partly merge to macroscopic
cracks which are mostly orientated along the loading direction. Only few cracks in the metallic glass
particles were observed at high elongations. The interface between the metallic glass platelets and the
matrix material remained mostly intact which is explained by the good bonding between metallic glass
and matrix as shown by Cytron et al. [12] and Lee et al. [9]. These results indicate that plastic defor-
mation mainly takes place within the AISi12 matrix. A further evidence for this assumption is the for-
mation of matrix extrusions on the edges of metallic glass platelets. The extrusions may be due to dis-
location pile-ups leading to stress concentrations and therefore to crack formation around the extru-
sions as shown in Figure 3 (d).

The microstructural observations during mechanical loading described above are qualitatively in
good coincidence with the numerical predictions based on the modelling by a dislocation-based con-
tinuum formulation. The numerical analyses predicted a high level of dislocation slip activity, i.e. plas-
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tic deformation, close to the edges of the inclusions (cf. Figure 8). In fact, in this region of the metallic
platelets extrusions could be observed indicating such dislocation slip activity.

Nevertheless, the model presented deals with rather small inclusions in comparison to the platelets,
therefore further investigations should comprise a variation of not only the platelet shape but also the
platelet size. On the other hand, a reduction of the platelet size for the experimental investigations may
lead to a further increase in reinforcement volume content and hence improve the mechanical proper-
ties.

5 CONCLUSIONS

In this contribution, innovative metallic glass particle reinforced MMCs produced by gas pressure
infiltration were examined with regard to damage mechanisms and crack evolution. Investigations
were performed by in-situ compression tests within a SEM chamber for a detailed investigation of the
damage evolution and by numerical modelling.

Experimental results show that first cracks form in the AlSil2 matrix within silicon primary crys-
tals and eutectic silicon lamellae. These cracks get larger with higher elongations and form macroscop-
ic cracks within the matrix material. Plastic deformation was observed to localize in front of metallic
glass particles as matrix extrusions. Only few cracks formed in a metallic glass platelet and the bond-
ing in the interface between metallic glass platelet and matrix material remained mostly intact.

A dislocation-based continuum formulation was adapted to the microstructure to investigate the in-
terfacial behavior between the hard amorphous particles and the surrounding aluminum matrix. Look-
ing at different cut-offs of the simplified material, the main deformation mechanisms have been inves-
tigated. Considering dislocation pile-ups in the microstructures, the corresponding stress peaks could
be identified. The analysis of the distribution of plastic slip over the structure showed the strongly
inhomogeneous matrix behaviour during the loading process.
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