Effects of Chromium on tribological properties of Ni$_3$Al under dry sliding

CHEN Yanan, JIN Yunxue *, NIU Muye, CHEN Hongmei
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Key words: Ni$_3$Al intermetallic, Cr content, Friction coefficient, Wear rate, Sliding wear performance

ABSTRACT

Ni-25 at% Al intermetallic with different Cr contents was successfully produced by vacuum arc melting. Dry sliding tribological tests of the Ni$_3$Al alloys were undertaken against Si$_3$N$_4$. Vickers hardness of the alloys was also measured. In order to study the wear mechanism, the worn surfaces of the alloys were examined by scanning electron microscopy (SEM). The results showed that hardness, friction coefficient and wear rate of the alloys increased with increasing of Cr contents. The Ni$_3$Al-12Cr alloy obtained the best wear resistance properties compared to other three alloys. Besides, friction coefficient and wear rate declined with the increasing of loads. It was found that the dominant wear mechanism was oxidative wear and abrasive wear.

INTRODUCTION

Intermetallic compounds have been developing rapidly with new material needed in the heavy duty diesel industry. View from both fundamental and practical, Ni$_3$Al intermetallic compound has been extensively studied[1–8]. In the past few years, a lot of work has been concentrated on the research of the effect of alloying elements, mechanical properties, oxidation and corrosion. Ni$_3$Al intermetallic compound depending on excellent comprehensive mechanical properties has been recognized as an alternative material for industrial application. A number of laboratory studies have indicated that Ni$_3$Al alloys have significant potential in wear-critical applications[9–14]. The unique performance of Ni$_3$Al leads to various tribomaterials developments[15–16].

Most studies focused on high temperature properties, however, Ni$_3$Al also possess certain properties which make them potential for room temperature applications. According to the references [17–20], Cr additions to Ni$_3$Al that existed as a solution have been reported about 8 at% Cr shows great ability of suppressing the oxygen embrittlement of Ni$_3$Al alloys at intermediate temperatures. P. Adeva et al.[21] investigated the microstructural evolution of a powder metallurgy (PM) Ni$_3$Al–8Cr (at%) alloy reinforced with Cr particles. In this paper, since Cr particles will be located at the original particle boundaries of the Ni$_3$Al powder, Cr reinforcing particles may act as a chromium supply source during deformation, promoting the formation of a protective oxide film to shut out the gaseous oxygen entering through the particle and grain boundaries. The present study is to investigate tribological properties of Ni-25at% Al intermetallic compound with different Cr content. This experiment researched the effects of chromium on tribological properties of Ni$_3$Al under room- temperature dry sliding.

1 EXPERIMENT METHODS
The initial materials were commercial Al, Ni and Cr (Ni-to-Al atomic ratio is 3:1). Ni$_3$Al–X Cr (X denote the alloy with at% content of Cr) alloys were synthesized by the high temperature electric arc furnace melting. The chemical composition of the alloys is shown in Table 1. Experimental specimens were cut by a wire-electro-discharging.

Before tribological tests, Ni$_3$Al phase were identified by using X-ray (XRD, Rigaku ME510-FM2), scanning electron microscope (SEM, JEOL-5410), and energy dispersive spectrometry (EDS). X-ray diffractometer at a scanning speed of 6 °/min and a scanning range from 20 ° to 90 ° used a copper target and an applied voltage and current of 30 KV and 20 mA respectively. The morphologies of the samples were studied by using scanning electron microscopy (SEM, JOEL JSM-6600). The Vickers hardness of the Ni$_3$Al–X Cr alloys were measured by a Vickers indentation technique with an endurance time of 10 s, the average of nine repeat tests was given. Compression properties were evaluated by using an UTM5205X testing system with a loading speed of 1.2 mm/min on samples with dimension of Φ5 mm × 10 mm. The wear test specimens were cut into the dimension of Φ10 mm × 2.5 mm, and the surface of the specimens were polished. In order to reduce the experiment errors and keep the surface clean, the ball and specimen were ultrasonically cleaned using ethyl alcohol, and dried with hot air before wear experiments. The wear behavior was measured by a HT-1000 ball-on-disk high-temperature tribometer.

The counterpart ball was the commercial Si$_3$N$_4$ ball with diameter of 6 mm, the Ni$_3$Al–X Cr alloy as a disk. The sliding speed of 10.4 cm/s was selected as a constant value by adjusting the rotation speed (200 r/min) of the disk and the diameter (diameter 5 mm) of wear track. Each tribological test lasted 30 min at applied loads ranged from 5 N to 20 N. The cross-section profile of worn surface was measured using a surface profilometer. The wear volume was determined as V = AL, where A was the cross-section area of worn scar and the values were averages of four replicates, and L was the perimeter of the worn scar. The volumetric wear rate was evaluated using Eq. (1).

$$ W = \frac{V}{FS} $$

where V was the volume worn away in mm3, F was the normal load in N, S was the sliding distance in meter, and W was wear rate in mm3/N·m.

Table 1 Compositions and mechanical properties of the Ni$_3$Al-X Cr alloys

<table>
<thead>
<tr>
<th>Compound</th>
<th>Compositions (at%)</th>
<th>Hardness (HV)</th>
<th>Compressive strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_3$Al</td>
<td>Ni$_3$Al</td>
<td>201</td>
<td>1854</td>
</tr>
<tr>
<td>Ni$_3$Al-4Cr</td>
<td>Ni$_3$Al+4%Cr</td>
<td>246</td>
<td>1968</td>
</tr>
<tr>
<td>Ni$_3$Al-8Cr</td>
<td>Ni$_3$Al+8%Cr</td>
<td>315</td>
<td>2143</td>
</tr>
<tr>
<td>Ni$_3$Al-12Cr</td>
<td>Ni$_3$Al+12%Cr</td>
<td>357</td>
<td>2197</td>
</tr>
</tbody>
</table>

2 RESULTS AND DISCUSSION

Fig.1 shows the XRD patterns of Ni$_3$Al–X Cr alloys. It was noted that the material without Cr element only formed single Ni$_3$Al phase, and (100), (110) and (211) crystal indices were ordered Ni$_3$Al
With the increasing of Cr content, there was no chromium compound in the XRD patterns, beside, the peak of Ni$_3$Al continuously shifted to the left. If it exhibited chromium compounds, the peak of Ni$_3$Al would slide to the right that was the direction of the lattice distortion decreasing$^{[23]}$. As a result, Cr element existed in Ni$_3$Al alloy in the form of solid solution resulting in the lattice distortion continuously increasing.

Fig.1 XRD patterns of Ni$_3$Al alloys with different Cr contents

Fig.2 shows the microstructures of Ni$_3$Al-X Cr alloys. There was no apparently dendrite and interdendritic in pure Ni$_3$Al intermetallic compound (shown in Fig.2 (a)). However, dendrite and interdendritic were obtained in other three alloys, at the same time, volume fraction of interdendritic regions decreased evidently with the increasing of Cr content. According to the EDS results (shown in Table 2), Cr content in dendrite was a little higher than that in interdendritic (even numbers denote dendrite, odd numbers denote interdendritic, except number 1). Besides, there was no difference between the hardness of dendrite and interdendritic.
Fig. 2 The SEM micrographs of Ni$_3$Al alloys with different Cr contents
(a) Ni$_3$Al, (b) Ni$_3$Al-4Cr, (c) Ni$_3$Al-8Cr, (d) Ni$_3$Al-12Cr

Table 2 Chemical composition of Ni$_3$Al-X Cr alloys in atomic percentage

<table>
<thead>
<tr>
<th>Area</th>
<th>Ni</th>
<th>Al</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74.03</td>
<td>25.97</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>79.00</td>
<td>16.14</td>
<td>4.86</td>
</tr>
<tr>
<td>3</td>
<td>71.33</td>
<td>26.49</td>
<td>2.17</td>
</tr>
<tr>
<td>4</td>
<td>76.69</td>
<td>13.96</td>
<td>9.36</td>
</tr>
<tr>
<td>5</td>
<td>68.45</td>
<td>25.17</td>
<td>6.38</td>
</tr>
<tr>
<td>6</td>
<td>71.92</td>
<td>15.64</td>
<td>12.43</td>
</tr>
<tr>
<td>7</td>
<td>67.58</td>
<td>24.65</td>
<td>7.78</td>
</tr>
</tbody>
</table>

The variation of friction coefficients of Ni$_3$Al-X Cr alloys with loads at a sliding speed of 10.4 cm/s under air condition is given in Fig. 3. It was clear that friction coefficients of each material decreased with the increase of loads. It could be found that the friction coefficients of the Ni$_3$Al-X Cr alloys fluctuated between 0.4 and 0.6 and continued to decrease as the load increasing. Furthermore, under the same loading condition, with the increasing of Cr contents, friction coefficients of alloys declined, which because the extended hardness (shown in Table 1) reduced contact areas between ball and disk with the increase of Cr contents.

Fig. 3 Variations of friction coefficients the Ni$_3$Al-XCr alloys under different loads
Fig. 4 shows the profiles of wear tracks of Ni₃Al-XCr alloys with 10N load at sliding friction. Obviously, with the increasing of Cr contents, the width and depth of the worn track reduced. The friction coefficient of materials under dry sliding friction conditions could be expressed by the following formula (2), where \(\mu \) was the friction coefficient, \(S \) was the shearing stress, \(A \) was the apparent contact area and \(W \) was the normal load\(^{[24,25]} \).

\[
\mu = \frac{S A}{W}
\]
(2)

Therefore, under the same load, the apparent contact area was decreasing as the amount of Cr increased due to the hardness increased as the amount of Cr increased (Shown in Table 1). So the friction coefficient of Ni₃Al-12Cr was the smallest.

Fig. 4 shows the variations of wear rates of the Ni₃Al-XCr alloys under different loads. These results verified that the increasing in loads resulted in decrease in wear rate. Under the same loading condition, the wear rate of test materials decreased with the increasing of Cr content. Ni₃Al alloy without Cr showed the highest wear rate than other materials with the loads increasing, ranging from \(2.1 \times 10^6 \text{ mm}^3/\text{N·m} \) to \(9.5 \times 10^7 \text{ mm}^3/\text{N·m} \). And Ni₃Al-12Cr exhibited the minimum wear rate ranging from \(1.7 \times 10^6 \text{ mm}^3/\text{N·m} \) to \(8.4 \times 10^7 \text{ mm}^3/\text{N·m} \). It indicated that the moderate Cr additions to Ni₃Al alloy improved the load-bearing ability (shown in Table 1) and anti-wear properties under dry sliding friction.
Fig. 5 Variations of friction coefficients the Ni₃Al-XCr alloys under different loads

Fig. 6 shows the micro morphologies of the worn surfaces of Ni₃Al-X Cr alloys with 10N load at sliding friction. The micro morphologies of the worn surfaces of all four materials were apparently covered by grooves and cracks. As can be seen in Fig. 6(a)-(d), the worn surface of the Ni₃Al alloy possessed obvious grooves and cracks compared to the other three materials. When compared to Ni₃Al alloy, the cracks of Ni₃Al-4Cr were significantly reduced. It was obvious that there were shallow grooves and almost no cracks in Ni₃Al-8Cr alloy. It was worth noting that Ni₃Al-12Cr exhibited not only least grooves but also least cracks than that of other materials. Combining with Table 1, it meant an increase load-bearing ability in Ni₃Al-12Cr owing to the high hardness, which was also confirmed with the compressive strength.

The distribution of different elements on worn surface of each area was determined by EDS (shown in Table 3). The EDS analysis of the wear track formed on the worn sample showed that wear tracks contain high oxygen while there was no oxygen before wear test (shown in Table 2). It was possible to claim that the oxides formed on the surface of test materials and the presence of oxygen in rubbing surface confirms the formation of nickel oxide and aluminum oxide or chromium oxide; and the tiny amounts Si element came from Si₃N₄ ceramic ball. Although each area contained O, it was worth nothing that oxygen content in the areas of even numbers (shown in Fig. 6 II, IV, VI, VIII) were no wear off is higher than that of odd numbers (shown in Fig. 6 I, III, V, VII). It signified that the temperature was increased so that oxidation of the alloys occurred during the sliding experiment. Another important feature was the formation of cracks/flaws. These cracks eventually led to material decohesion/detachment due to plastic deformation under cyclic forces. Stott has claimed that the oxidation layer occurring on the surface decreases the wear rate. Hence, considering the analysis above, it could make a conclusion that the wear mechanism contained abrasive wear and oxidative wear.

The addition of Cr increased the hardness and compressibility of the material (shown in Table 1); and there was no difference between the hardness of dendrite and interdendritic. Based on above analysis, Ni₃Al-12Cr possessed high load-bearing ability and excellent anti-wear performance.
The morphologies of the worn surfaces of Ni₃Al-X Cr alloy with 10N load are given in Fig.6 (d) and Fig.7 (a)-(c). When test materials ran for 5 N (Fig.7 (a)), grooves and cracks were visible. With the increasing in loads, small grinding debris appeared on the worn surface; and grooves and cracks were not obvious. When the applied loads increased to 20N (Fig.7 (c)), abrasion area distributes fine size debris, and there was no crack. Debris was adhered to worn surface and a film of wear debris was formed on the worn surfaces in the sliding owing to the high temperature on the worn surfaces[27]. In this case, the worn surfaces were protected from abrasion of debris by the film. At the same time, it also confirmed that the friction coefficient was smaller under high loads (shown in Fig.3).

![Fig. 6](image.png)

Table 3 Compositions of worn surface of each area (at%)

<table>
<thead>
<tr>
<th>Area</th>
<th>Ni</th>
<th>Al</th>
<th>Cr</th>
<th>O</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>66.44</td>
<td>21.46</td>
<td>-</td>
<td>12.10</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>39.13</td>
<td>13.15</td>
<td>-</td>
<td>47.71</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>65.57</td>
<td>20.36</td>
<td>4.63</td>
<td>9.43</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>28.94</td>
<td>8.03</td>
<td>1.65</td>
<td>58.45</td>
<td>2.93</td>
</tr>
<tr>
<td>V</td>
<td>56.81</td>
<td>17.95</td>
<td>6.77</td>
<td>18.47</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>30.60</td>
<td>9.10</td>
<td>3.72</td>
<td>54.07</td>
<td>2.51</td>
</tr>
<tr>
<td>VII</td>
<td>53.58</td>
<td>22.89</td>
<td>8.45</td>
<td>15.08</td>
<td>-</td>
</tr>
<tr>
<td>VIII</td>
<td>27.97</td>
<td>9.94</td>
<td>5.36</td>
<td>55.68</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Fig. 7 The morphologies of the worn surfaces of the Ni$_3$Al-12Cr under different load
(a) 5N, (b) 15N, (c) 20N

3 CONCLUSIONS

Effects of chromium added on tribological properties of Ni$_3$Al under dry sliding were investigated. The following results can be drawn from the present study:

(1) Ni$_3$Al alloys were successfully produced by vacuum arc melting. Cr element existed in Ni$_3$Al alloy in the form of solid solution. Hardness and compressive strength of Ni$_3$Al alloys increased with increasing of Cr added content. Ni$_3$Al-12Cr possessed the highest Vickers hardness and compressive strength.

(2) Under the same loads, the response of the friction coefficients and the wear rates of the four alloys to Cr content were differentiable. The friction coefficient and wear rate of Ni$_3$Al-12Cr both declined compared with other three materials.

(3) With the increase in loads, the friction coefficient and wear rate of each alloys decreased.

(4) The dominant wear mechanism had been found to be oxidative wear and abrasive wear due to the high oxygen and grooves concentration on the worn track.

REFERENCES

[1] Niu MY, Bi QL, Kong LQ, Yang J, Liu WM, A study of Ni3Si-based composite coating fabricated by self-propagating high temperature synthesis casting route, *Surface & coatings*
Zhu SY, Bi QL, Yang J, Liu WM, Xue QJ

Metallurgica 2011, 64, 518.

J. García Barriocanal, P. Pe’rez, G. Garce’s, P. Adeva. Microstructure and mechanical properties of Ni3Al base alloy reinforced with Cr particles produced by powder metallurgy,

