Preparation of Pd/TiO$_2$/Al$_2$O$_3$ composite membranes with high H$_2$-permeability

Lei Wei*, Jing Gao

College of Chemistry and Material Science, Langfang Teachers University, Langfang 065000, PR China

Keywords: Hydrogen separation, Palladium composite membrane, Macroporous ceramic substrate, Surface modification, Hydrogen permeability

With the rapid development and worldwide utilization of hydrogen energy, Pd composite membranes (including Pd-based alloy ones) have attracted more and more attentions and been regarded as one of the most practical function materials for hydrogen separation in many integrated energy systems [1,2]. To further accelerate the application in the fields of hydrogen separation and purification, palladium composite membranes with high permeability towards hydrogen are extremely demanded; meanwhile, ideal hydrogen selectivity is required as well [3,4].

In our present work, macroporous Al$_2$O$_3$ tubes were employed as membrane substrate due to their wide market sources, stable chemical properties and low cost. A novel method for substrate surface modification was introduced for the preparation of highly H$_2$-permeable palladium composite membranes. Homogeneous suspension comprised of TiO$_2$ nano-particles and polyvinyl alcohol (PVA) was used for dip-coating treatment on the substrate surface. Afterward, the coated substrate was heated at 600 °C under the atmosphere of nitrogen, resulting in a carbon-doped TiO$_2$ modified layer on the substrate (i.e., TiO$_2$–C/Al$_2$O$_3$) [5].

For the deposition of palladium membranes on the surface of TiO$_2$–C/Al$_2$O$_3$, electroless plating was performed at room temperature. After completing the deposition, the carbon residue was finally burned out, resulting in a Pd composite membrane denoted as Pd/TiO$_2$/Al$_2$O$_3$–1. For comparing, TiO$_2$/Al$_2$O$_3$ was achieved through the conventional solid sintering process in air, and the other Pd composite membrane (i.e., Pd/TiO$_2$/Al$_2$O$_3$–2) was prepared. Membrane performance was evaluated by H$_2$/N$_2$ single-gas testing at the temperature in range of 350–450 °C.

Experimental results indicated that hydrogen permeability of Pd/TiO$_2$/Al$_2$O$_3$–1 was much higher than that of Pd/TiO$_2$/Al$_2$O$_3$–2 under the same condition, which could attribute to the increase of effective membrane area in permeate side after the elimination of carbon residue. Moreover, Pd/TiO$_2$/Al$_2$O$_3$–1 had a higher selectivity towards hydrogen, indicating that the novel method for membrane preparation significantly facilitated to the decrease of membrane defects, particularly the role of carbon-doped intermediate layer. Long-term testing indicated that the prepared Pd composite membrane was permeable and stable.
Scanning electron microscopy (SEM) images of the surface and cross-section of Pd/TiO$_2$/Al$_2$O$_3$–1 were shown as following. It can be seen that there was no visible pinholes in membrane surface, and average membrane thickness was measured to be 4–5 µm.

![Surface and cross-section SEM images of Pd/TiO$_2$/Al$_2$O$_3$–1](image)

Figure (a) and (b): surface and cross-section SEM images of Pd/TiO$_2$/Al$_2$O$_3$–1

ACKNOWLEDGEMENTS

We are grateful to the financial support by the Research Project of Hebei Education Department, China (BJ2016044) and Natural Science Foundation of Hebei Provence, China (B2017408042).

REFERENCES