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ABSTRACT 

Unstiffened CFRP cylindrical shells under axial compression prone to buckle. For designing these 
shells a high discrepancy between the theoretical analytical and the real buckling load has to be handled. 
Responsible for this discrepancy are various imperfections, which influence the buckling load. One of 
the most important and historically first considered imperfections are the geometric or traditional 
imperfections, which describe the deviation from the ideal form. The extent of the geometric 
imperfections is largely determined by the manufacture of the cylindrical shells and the boundary 
conditions. The fact that these imperfections are not exactly known before manufacture makes the design 
difficult. Therefore, despite a multitude of already existing experiments with CFRP cylinders, 
knockdown factors are used for the design, which lead to very conservative designs. Therefore, the 
statistical data base has to be extended and imperfections have to be characterized. In this paper, 
geometric imperfections of eleven already tested CFRP cylinders are analysed and characterised. In 
addition, the influence of the clamping on the geometric imperfections is investigated. Furthermore, 
tolerance classes are defined based on the shape tolerances that occur. Artificial cylinders are generated 
for the individual tolerance classes and their buckling load is calculated. Before this, a study is carried 
out to determine how many Fourier coefficients are necessary to describe the cylinders and how the 
individual modes influence the buckling load. It is shown that a reduction of the geometric imperfections 
increases the buckling load slightly, but decreases it significantly if the existing geometric imperfections 
are increased. This is particularly caused by the increase in short-wave axial imperfection modes. 
Finally, the geometric imperfections of another newly manufactured cylinder are analysed and 
characterized. This cylinder is tested on the hexapod test rig of the Hamburg University of Technology 
and the test results are compared with the simulation results. 
 
1 INTRODUCTION 

Thin and unstiffened cylindrical shells are a commonly used part in aerospace engineering. Two 
recent examples are the interstage of the Falcon 9 from SpaceX [1] and  the  Electron from Rocket Lab 
whose structure is made of carbon fibre reinforced plastic [2]. Because of this application, there are high 
weight and safety requirements for theses shells. Due to high radius-thickness ratios (R/t-ratio), these 
structures prone to buckle under axial load. However, for designing cylindrical shells, a significant 
discrepancy between the theoretical, analytical buckling load and the real buckling load have to be 
handled. Responsible for this discrepancy are various imperfections, like geometric imperfection, load 
imperfection and other disturbances like scattering of material parameter. To consider these 
imperfections the NASA SP-8007 was developed in the 1960s to design reliable cylindrical shells. It 
suggests knockdown factors based on test of metallic cylinders under various boundary conditions [3]. 
However, this guideline leads to conservative designs for cylindrical shells made of composite 
materials [4]. Therefore, new design guidelines have to be developed and all relevant influence factors 
have to be characterized. The aim of this paper is to analyse the influence of geometric imperfections of 
different tolerance classes on the buckling load in order to support the development of new design 
guidelines. 
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2 DESIGN OF THIN-WALLED CFRP CYLINDER SHELLS 

The design of thin-walled cylindrical shells under axial compressional loads has been the subject of 
research for more than one hundred years. First solutions for the determination of the buckling load were 
presented by Lorenz [5], Timoshenko [6] and Southwell [7] at the beginning of the 20th century. 
Experiments during the next decades showed significantly lower experimental buckling loads compared 
to predicted ones. In 1934 Donnel developed an approach for the design of thin-walled cylinders under 
compression and bending stress based on his own and external tests, which also take into account large 
displacements and imperfections in the form of a double harmonic series [8]. In his dissertation in 1945 
Koiter describes the close connection between geometric deviation from a perfect cylinder and the 
observed reduced buckling load. This work received more attention when it was translated into English 
in 1970. Koiter considers geometric imperfections in the form of double Fourier series and shows that 
the imperfection pattern is important for the estimation of a knockdown factor [9]. 
The currently still valid design guideline is the NASA SP 8007 which proposes a knockdown factor 
depending on the R/t-ratio. This is based on a large number of tests with metallic cylinders from the 
1930s to 1960s [3]. However, in these experiments typical specific parameters of CFRP are not 
considered. Therefore, this guideline leads to relative conservative designs for cylindrical shells made 
of CFRP [4]. Another design method is the Single Perturbation Load Approach proposed by Hühne, 
which delivers higher buckling loads than NASA SP 8007 [10]. However, it provides in some 
constellations higher loads than experimentally demonstrated [11]. Since any imperfections are random, 
the use of probabilistic methods is appropriate to take them into account of the design process. The first 
approaches have been available since the early 1960s, such as the one developed by Bolotin [12]. The 
probabilistic approaches have been further developed over the past 60 years, but because of the 
insufficient statistical database the use of these approaches without assumptions remains critical. 
 

3 THE INFLUENCE OF GEOMETRIC IMPERFECTIONS 

As shown in the previous chapter, some of the most relevant impact factors on the buckling load are 
the geometric imperfections or so-called traditional imperfections. Apart from the manufacture, the 
boundary conditions, like the clamping of the cylinder, influence the geometric imperfections.  

 
3.1 Definition and Description of Geometric Imperfections 

Geometric imperfections are deviations of the ideal form and most common described by Fourier 
coefficients. In contrast to metallic cylinders, CFRP cylinders tend to have longer wavelength 
imperfection patterns due to the manufacturing process [13]. In literature there are two common 
approaches to model the imperfections [14]. One is the half wave cosine and the other is the half wave 
sine approach. Since the half wave sine approach has always a trivial solution (sin(𝑘𝑘𝑘𝑘𝑘𝑘 𝐿𝐿⁄ ) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 =
0, 𝐿𝐿) at the ends of the cylinders, the half wave cosine is used in this paper to include geometric 
imperfections at the ends of the cylinders. 

𝑊𝑊� (𝑥𝑥,𝑦𝑦) = 2𝑡𝑡�� cos
𝑘𝑘𝑘𝑘𝑘𝑘
𝐿𝐿
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(1) 

The variables 𝐴𝐴𝑘𝑘𝑘𝑘 and 𝐵𝐵𝑘𝑘𝑘𝑘 are the Fourier coefficients.  𝐿𝐿 describes the cylinder’s length, 𝑅𝑅 is the 
radius and 𝑡𝑡 is the wall thickness of the cylinder. The indices 𝑘𝑘 and 𝑙𝑙 indicate the number of half waves 
in the axial direction and the number of full waves in the circumferential direction. Describing geometric 
imperfections in the Fourier coefficients as shown here is partly due to the fact that imperfection patterns 
are stored in this form in the international imperfection database in Delf and Haifa, thus enabling a 
comparison of different imperfections [15].  
  



3.2 The Influence of the Clamping 

For the testing of the cylinders, a connection between the cylinder and the test rig has to be realized. 
In general, there are two possibilities to realize this connection. One possibility is to clamp the cylinders, 
the other one is to glue them freely glued into the connection, for example into a groove. To reduce the 
geometric imperfections the cylinders are mounted in a clamped solution, which is described in [16]. 
With the reduction of the geometric imperfection through clamping the cylinder the buckling load 
increases like it is shown on epoxy cylinders in [17]. 

In Figure 1 the reduction of the geometric imperfections through the clamping is shown by a winding-
up of a cylinder surface before and after clamping. However, calculating the Fourier coefficients shows 
that the clamping only reduces the longer modes. Nevertheless, simulations indicate that these radial 
modes with two full-waves have only a small impact on the buckling load, although these modes have 
relative high amplitudes. 

 
Figure 1: Winding-up of a cylinder surface before (a) and after (b) clamping. 

 
4 ANALYZING DIFFERENT TOLERANCE LEVELS OF GEOMETRIC 
IMPERFECTIONS 

In this chapter the geometric imperfections of eleven CFRP cylinders are analysed. Based on these 
geometric imperfections tolerance classes are defined. New artificial cylinders are generated for each 
tolerance class and the referring buckling loads are calculated. 

 
4.1 Characterization of the Existing Cylinders 

The cylinders are manufactured in a filament winding process at the DLR Braunschweig. The 
cylinders’ material is an AS7 fibre with an 8552 matrix. The cylinders have a nominal layup of [90°/30°/-
30°]S. However, due to the manufacturing processes the layup of 30°-layers varies over the cylinder. 
The nominal length is 215 mm, nominal radius is 115 mm and the nominal thickness is 0.81 mm [3]. 

In a first step the range of the geometric imperfection of these cylinders is determined. The range of 
the cylinders’ deviation of the ideal geometry lays between 0.20 mm and 0.09 mm on the upper end and 
between -0.19 mm and - 0.01 mm on the lower end. The mean is 0,14 mm or respectively -0.11 mm. 
Compared to other tested cylinders, like shown in [10] and [4], the cylinders are relatively thick and the 
maximum amplitudes are relatively small. For further information on the cylinders, such as the 
calculated Fourier coefficient, refer to [18]. 
 
4.2 Modelling of the Cylinders 

The cylinders are modelled with S4R shell elements in AQAQUS/implicit. Based on the convergence 
study by [16] a mesh size of 214 x722 elements is chosen. To take the geometric imperfections into 
account, the data recorded by the ATOS system is further processed in Matlab and the imperfections are 
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mapped into the model nodes via the calculation and use of the Fourier coefficients. With the ATOS 
measurement results a geometric mesh is calculated in a proprietary software of the company of the 
measurement system. Based on this geometric mesh, measuring points are chosen in a selected 
resolution for further processing. 

At first, the necessary resolution of the measured geometry is determined. For this purpose, the 
calculated Fourier coefficients of different resolutions of the measured geometry are compared pairwise. 
Results show that there is no relevant difference to higher resolutions in the examined cylinders with a 
resolution of 51 x 174 measuring points. In a second step a study to determine the number of relevant 
Fourier coefficient is carried out. The possible number of Fourier coefficients is limited by the resolution 
of the geometry data of the ATOS measurement. The number of axial and circumferential Fourier 
coefficients is gradually increased and the buckling load is calculated and compared with the 
experimental load. It turns out that the calculated buckling load is lower than the experimental load when 
many Fourier coefficients are taken into account. The reason for this may be the consideration of peel 
ply textures, which have relatively short wavelength patter but do not influence the relevant geometry 
for the buckling load. However, when fewer Fourier coefficients are used the buckling load is 
overestimated. Furthermore, the optimum number of Fourier coefficients varies between the cylinders. 
Nevertheless, 15 coefficients in axial direction and 12 coefficients in circumferential direction have 
proved to be practicable for all cylinders. 

 
4.3 Varying the Geometric Imperfection 

Based on the existing geometric imperfection, five different tolerance classes of geometric 
imperfections are as follows defined. Two smaller and two wider tolerance classes are chosen around 
the tolerance class T2 (see Fig. 2), in which all existing cylinders are arranged. The maximal value of 
the amplitudes is doubled between every tolerance class. To evaluate these classes new artificial 
cylinders are generated based on the distribution of the Fourier coefficients of the existing ones. 

𝐴𝐴𝑖𝑖,𝑗𝑗 = 𝜆𝜆�𝐴𝐴𝑖𝑖,𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� (2) 

The function randn generates a randomly normally distributed number between zero and one. The 
scalars 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠 are the mean and the standard deviation of each Fourier coefficient of the 
analysed cylinder set. Whereas 𝜆𝜆 scales the generated Fourier coefficient for each tolerance class. With 
this approach imperfection pattern are generated, which are very similar to the existing ones.  

The buckling load of the generated cylinders is calculated. Since lateral forces occurred in the 
considered experiments, the mean value of the occurring lateral forces (𝐹𝐹𝑥𝑥 = −1.23 𝑘𝑘𝑘𝑘;𝐹𝐹𝑦𝑦 = 2.70 𝑘𝑘𝑘𝑘) 
is assumed for the calculations of the buckling loads of the artificially generated cylinders in order to 
receive realistic buckling loads. However, with the use of a mean value of occurring lateral forces there 
is no influence of the scattering of the lateral forces on the scattering of the buckling load. Table 1 lists 
the maximum imperfections considered for the tolerance class, the calculated mean buckling load and 
their scatter. In Figure 2 the scattering of the buckling load of each tolerance class is depicted.  

 
Tolerance 

class 
Tolerance range  

 
[mm] 

Average  
buckling load  

[kN] 

Standard deviation 
buckling load 

[kN] 
T0 ± 0.05 62.22 0.12 
T1 ± 0.10 61.81 0.28 
T2 ± 𝟎𝟎.𝟐𝟐𝟐𝟐 𝟔𝟔𝟔𝟔.𝟑𝟑𝟑𝟑 𝟎𝟎.𝟔𝟔𝟔𝟔 
T3 ± 0.40 56.58 1.67 
T4 ± 0.80 47.60 1.51 

 
Table 1: Tolerance class and average calculated buckling load. 

 
Higher amplitudes of the whole Fourier spectrum lead to lower buckling loads. For instance, reducing 

the range of the existing amplitudes (T2) by 50 % leads to 2.4 % higher buckling load and reduces the 
standard deviation between the cylinders by 58.2 %. Whereas, doubling the tolerance range results in a 



decrease of the buckling load of 6.3 % and the scattering increases by 145 %. In contrast to the relatively 
high amplitude of the first low radial modes of the unclamped cylinder, an increase of the whole 
spectrum of imperfections leads to significant lower buckling loads.  

 

 
 

Figure 2: Scattering of the calculated buckling load of the artificial cylinders. 

In a further study, individual modes are increased and the effect of increasing different modes on the 
buckling load analysed. The second, fourth, sixth, eighth and tenth modes of two cylinders are increased 
to a value of 0.5 mm in both the axial and circumferential directions. This means that these generated 
cylinders are in tolerance class T4, whereby they are close to tolerance class T3.   

The calculated buckling load of the two arbitrary chosen cylinders considered without increasing 
individual modes is 59.56 kN and 60.16 kN for comparison. In Figure 3 the results of the calculation are 
depicted. The reduction of the buckling load as a result of the increase of individual modes behaves 
qualitatively and quantitatively the same way for both considered cylinders. There are basically two 
trends. The shorter the wavelength of a mode, the higher the reduction of the buckling load resulting 
from an increase in the amplitude of a mode. Furthermore, the increase of amplitudes of the modes in 
the axial direction leads to a significantly greater reduction of the buckling load. This can be explained 
since, as especially long-wave modes in circumferential direction are to be understood as ovalization, 
which has little influence on the buckling load. 

In summary the increase of the entire mode spectrum leads to a reduction of the buckling load. 
Especially the higher wavelength modes in axial direction are decisive for this, whereas the amplitude 
of long-wave circumferential modes which, for example, are reduced by clamping have a very small 
influence. 

 

 

Figure 3: Scattering of the calculated buckling load of the artificial cylinders. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of the cylinder

45

45

50

55

60

65

70

B
uc

kl
in

g 
Lo

ad
 [k

N
]

Tolerance class T1

Tolerance class T2

Tolerance class T3

Tolerance class T4

Tolerance class T5

2 3 4 5 6 7 8 9 10

Artificially raised mode

0

10

20

30

40

50

60

70

C
al

cu
la

te
d 

bu
ck

lin
g 

lo
ad

 [k
N

]

Cylinder 2.1 circumferential
Cylinder 2.2 circumferential
Cylinder 2.1 axial
Cylinder 2.2 axial



Tobias S. Hartwich and Dieter Krause 
 

5 TRANSFER TO A SECOND SET OF CYLINDERS 

For the further investigation of the defined tolerance classes, they must be validated by further tests. 
In this chapter a further cylinder is measured and tested. 

5.1 Test and Test Setup 

Based on these results a new set of six CRFP cylinders with similar material parameters and 
geometric properties are developed and manufactured by the DLR Braunschweig. Again, the geometric 
imperfections of the clamped cylinders are measured with ATOS system from GOM and compared with 
the results described earlier. Furthermore, one of these cylinders was tested on the hexapod test rig of 
the Hamburg University of Technology for validation.  

The hexapod test rig is 6 degree of freedom (dof) movement platform which is able to execute various 
static and dynamic test. Further details of the test rig are described in [19]. In Figure 4 the test setup is 
shown. The clamped cylinder is placed on the 6 dof load cell. On the cylinder six strain gauges are 
placed circumferentially. Furthermore, three optical displacement sensors are used in order to track an 
inclination of the cylinder. For the connection between the fixture of the cylinder and the platform of 
the test rig two solutions as described in [18] are used. The first solution is the clamped support which 
connects the cylinder with test rig in all dofs. The second solution consists of a ball-and-socket-joint and 
introduces the load in the middle of the cylinders clamping. Therefore, inclinations are possible with the 
second solution.  

In contrast to [16] the clamped support is chosen first because it rather corresponds to the boundary 
condition of the application case. After six elastic compression and tension tests the buckling test was 
repeated ten times with clamped support. The buckling test was then carried out with the ball-and-
socket-joint connection to determine the influence of the boundary condition induced by the connection. 

 
 

 
 

Figure 4: Test setup of buckling test on the Hexapod test rig. 

5.2 Test Results 

Before the buckling tests were carried out the surface of the clamped cylinder was measured by an 
ATOS system. The extend of the geometric imperfections are analysed. Furthermore, the Fourier 
coefficient are calculated and shown in Figure 5 on the left side. On the right side of Figure 5 there is a 
winding up of the clamped cylinder’s surface. As determined in Chapter 4, 12 rotating full waves and 
15 axial half waves are considered for later simulations. 
  



The range of the cylinder’s deviation of the ideal geometry lays between 0.12 mm on the upper end 
and -0.21 mm on the lower end. Therefore, this cylinder fits best into the tolerance class T2. However, 
the deviation on the upper end is very close to tolerance class T1 and the lower end is actually just within 
the range of tolerance class T3. But the range from the upper to the lower end is 0.33 mm which fits best 
to the tolerance class T2 with range 0.4 mm. Furthermore, the second and fourth circumferential full-
wave are very distinct, which is consistent with the literature where CFRP cylinders tend to long wave 
imperfections [13], [16]. 

 

 

Figure 5: Fourier coefficient of the tested cylinder (a) and winding-up of a cylinder surface after 
clamping (b). 

Ten buckling tests are carried out with the cylinder in the clamped support. In the first test a buckling 
load of 59.87 kN occurs. In the second test the buckling load decreases to 57.49 kN. In the third test the 
buckling load increases to 59.45 kN. However, the next seven tests have results between 58.60 kN and 
57 kN. Even the tenth test reached a load of 57.78 kN. In the following the ball-and-socket-joint 
connection was used. In this test setup a buckling load of 57.78 kN was determined. After that the 
cylinder was destroyed during the next test. In Figure 6 the graph of the occurring axial loads of six 
buckling test are plotted. Five are carried out with the clamped support and one is carried out with the 
ball-and-socket-joint connection (simple). 

 

 
Figure 6: Course of axial compressive loads including buckling loads. 
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Since the buckling load only decreases marginally over the cylinder specific tests and partly increases 
again, an elastic buckling behaviour is assumed. However, for a prove this would require the laminate 
to be checked for fibre breaks and delamination. Since the cylinder was destroyed as a result of another 
test, this has to be checked again with another test specimen. However, the lateral forces occurring from 
the first to the second test change by about 0.5 kN in both the x and y directions. In all following tests 
with the fixed clamping, the course of the lateral forces looks the same as in the second test. This may 
indicate that smaller failure effects occurred as a consequence of the first test. 

With a maximum buckling load of 59.87 kN and an average of 58.5 kN, this cylinder lies exactly 
between the buckling loads of tolerance classes T2 and T3. This means that the buckling load 
corresponds exactly to the range in which the cylinder was classified by the geometric imperfections. 
This test thus confirms the results of the defined tolerance classes. However, for a validated statement, 
further cylinders with the same and different radius-thickness ratio have to be tested. 

Compared to the carried out test, the buckling load decreases over the number of tests carried out in 
Schillo [18]. The maximum buckling load of 59.87 kN, on the other hand, is within the range of the 
average buckling load of 59.3 kN determined by Schillo over eleven cylinders [18]. As can be seen in 
Figure 7, the fixed clamping leads to lower lateral forces than a simple articulated clamping as used in 
the last test and by Schillo [18]. When using simple clamping the occurring lateral forces are comparable 
in direction and magnitude to those found by Schillo [18]. One possible cause for the high lateral forces 
in the use of the simple clamping could be a not optimally centric force introduction. Minor 
inhomogeneities and subsequent tilting can increase the applied lateral forces further. 

 

 
 

Figure 7: Occurring lateral forces. 

6 CONCLUSIONS 

The geometric imperfection of a set of eleven CFRP cylinders are analysed. Long-wave 
circumferential imperfections can be reduced by clamping the cylinders, but these imperfections have a 
small influence on the buckling load. In order to model the geometric imperfections of the given 
cylinders, 12 Fourier coefficients in the circumferential direction and 15 Fourier coefficients proved to 
be practicable. The evaluation of the five tolerance classes based on the eleven cylinders shows how the 
buckling load decreases with increasing form deviation. However, an increase in individual modes 
shows that long-wave circumferential modes have hardly any influence on the buckling load, which 
means that they have to be less considered in the definition of a manufacturing tolerance. In a further 
test, one of a new set of CFRP cylinder is measured and subsequently tested. The results support the 
defined tolerance classes. However, these results must be substantiated with further test results. 
Cylinders with different dimensions (R/t-ratio), layer structures and a different manufacturing process 
should be tested. 
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Furthermore, the test shows how the boundary conditions of the test setup influence the test result. 
In addition, there is a buckling behaviour which indicates elastic buckling. These two aspects have to be 
investigated further. Nevertheless, this paper proposes five suitable tolerance classes for the design of 
CFRP cylinders and shows how especially short-wave axial geometric imperfection influence the 
buckling load. 
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