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SUMMARY:  This paper deals with the stress-strain behavior of two viscoelastic polymers,
polypropylene and polyamide 6, filled with rigid particles in the range of axial strain of 0 to
8%. These materials, when subjected to a constant strain rate test lose stiffness via two
mechanisms: filler-matrix debonding and the viscoelastic softening of the matrix. A model
which combines the concepts of damage mechanics and the time dependence of the interfacial
strength is described and compared to the experimental results of polypropylene and
polyamide 6 filled with up to 50 vol.% of untreated and silane treated glass beads. The matrix
behavior is described in terms of an empirical equation selected to fit the stress-strain
behavior of neat polymers in the range of strain rates between 0.12 and 0.5% s-1 and strains
between 0 and 8%. The stiffness of the damaged, partially debonded composite is calculated
using the Kerner-Lewis equation assuming that debonded particles do not bear any load. The
model is able to generate stress-strain curves which are in good agreement with the
experimental data. The void volume attributable to debonding calculated using the model is
much smaller than the experimental total determined void volume (which is a sum of several
deformation mechanisms).
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INTRODUCTION

When a second, rigid phase is dispersed in a polymer the most obvious effect is the
substantial increase of the elastic (short term, small strain) stiffness. The effect on  other
properties is more complex to analyze. This is because, as a result of straining, the material
properties change because of damage related to factors such as filler/matrix debonding but
also due to the viscoelastic nature of the matrix. A number of attempts to model the
debonding resulting from the tensile loading have been published (1). However, since only
the rigid phase (the filler) is excluded from the load bearing as the debonding progresses, the
material loses its stiffness not only from the reduction of the effective section but also from a
reduction of the effective filler concentration in the remaining material [2,3].

This paper presents the model that can be used to calculate the stress-strain behavior of filled
polymers, and to evaluate the debonding during the straining. The predicted results are
compared to stress strain behavior of filled polypropylene and polyamide 6.
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EXPERIMENTAL RESULTS

The materials investigated are polypropylene (PP) and polyamide 6 (PA6)  filled with rigid
particles (glass beads-GB, talc and calcium carbonate (CaCO3). All the experimental details
concerning the used, sample preparation and mechanical testing can be found in the previous
paper [3].

Stress Versus Axial Strain Curves

Figure 1 shows the stress-strain curves of  polypropylene and polypropylene filled with glass
beads, talc and CaCO3.  In Table 1, the average values of several properties determined from
the σ vs ε curves are listed: the initial modulus, E0; the stress σ0 and strain ε0 at which the
stress strain curve deviates from linearity; the stress and the strain at yield, (σy and εy).

The principal points of the experimental results are:

• All materials exhibit an elastic zone; the initial modulus Eo increases with the filler
addition but is independent of the surface treatment for glass beads.

• The yield stress σy decreases with the filler addition:  σ vs ε curves of all composites
except those containing talc fall below that of neat PP well before yield.

• Both the stress and the strain at which the material ceases to be elastic (σ0 and ε0) decrease
with filler addition. The values of σo and of εo are higher with treated beads.

• The platy irregular shape of talc particles leads to a definite reinforcing effect in  PP, as
evidenced by the high initial modulus and yield stress.

• Although the transition between the linear (elastic) stage and the constant stress plateau
starts at a higher strain with treated beads the yield stress is independent of the surface
treatment.

• The composite with talc (20 vol.%) broke at a relatively low axial strain of about 5%.

Filled polyamide 6 also has a linear zone at small strains and the initial modulus is unaffected
by the surface treatment. Besides these similarities, there are significant differences between
filled  polypropylene  and polyamide 6 filled with untreated beads, on the one hand, and
polyamide 6 filled with treated beads (Fig. 2 and Table 1).  With untreated beads, the curves
fall below that of neat polyamide 6 but at higher strains than in filled polypropylene. The
departure from linearity in untreated glass-polyamide 6 composites follows a similar pattern
as in filled polypropylene i.e., the strain ε0 decreases with  increasing glass concentration.
However, the stress σ0 increases slowly with filler content. With treated glass, the strain ε0

appears to be independent of the filler content. In fact, it is very close to the ε0 value of the
neat polyamide 6.  The stress σ0 increases  substantially with the treated glass content.  The
stress-strain curves of polyamide 6 composites containing treated beads remain above the neat
polyamide 6 curve.
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Table 1:Summary of tensile properties of filled polypropylene GB: glass beads (T: treated
beads)

Polymer-filler-
vol.% E0 (GPa) ε0 (%) σ0 (MPa) εy (%) σy

(MPa)

PP 1.57 0.75 11.9 7 32

PP-GB-20 2.4 0.30 7.3 4 22

PP-GB-20T 2.4 0.37 9.0 4 22

PP-Talc-20 4.96 0.24 11.9 2.4 30.7

PP-CaCO3-20 3.1 0.20 6.2 2.9 22.7

PA6 0.92 0.73 6.8 2.7 18

PA6-GB-25 1.9 0.40 7.3 2.3 21

PA6-GB-25T 1.9 0.71 13.6 1.20 18

Fig. 1: Stress σ vs axial strain ε curves of PP filled with 20 vol.% of: silane treated glass
beads(1-T), untreated glass(NT), talc and CaCO3. . PP:unfilled polypropylene.
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Fig. 2: PA6 filled with 25 vol.% glass beads. Stress σ and volume strain ζ vs axial strainε
(%). T- treated beads, dotted lines indicate dilational behavior( i.e. calculated using the

initial Poisson ratio).

Tensile dilatometry

Figure 3 shows the volume strain versus axial strain (ζ vs ε) curves of polypropylene
containing 0 and 20 vol.% of glass beads , talc and CaCO3 respectively.  The neat ζ vs ε
polypropylene curve starts to deviate from linearity at about the same strain as the tensile
stress-axial strain curve. The curves of filled polypropylene exhibit two linear parts, the first
one being determined by the initial Poisson ratio, ν0c. Beyond the first stage the increasing
volume is an indication of the onset of debonding. As shown by curve 2 The talc filler
behaves differently: the perpendicular to stress oriented platelets in the sample core start to
debond at  very low strain. The volume strain vs axial strain curves of neat and filled
polyamide 6 (φ = 0.25) are shown in Figure 2. The behavior of neat polyamide 6 is similar to
that of polypropylene. At small strains, the ζ vs ε curves of polyamide 6, filled with treated or
untreated glass coincide up to ε � 1.5% (for  φ = 0.25).  The curves then diverge, the volume
of untreated glass composite increases at a much higher rate than that of treated glass. It
indicates that the fully debonded state is not reached  treated beads.

Fig. 3 Volume strain ζ vs axial strain  ε of PP filled with 20 vol.% of : 1- glass beads, 2- talc
and 3- CaCO3. T: treated glass beads, dotted lines indicate dilational behavior
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MODEL

The model is based on the following assumptions (see Fig. 4):

• Initially all filler particles (volume fraction φ) are well bonded to the matrix (bonded filler
volume fraction φb = φ, Fig. 4a). The material behavior can be described by the Kerner-
Lewis equation (see below).

• Upon straining the filler particles become progressively debonded (φb=φ-φd, φd being the
debonded filler volume fraction).The debonded particles do not bear any load (Fig. 4b).

• The completely debonded composite (φb=0, φ d=φ) behaves as a foam containing volume
fraction of voids equal to φd (Fig. 4c). Its behavior can also be described by the Kerner-
Lewis equation.

• The debonding rate (dφd/dt) depends on the applied stress and the number of particles
available for debonding (φ-φd) or (φb).

Fig. 4 Schematic representation of a filled polymer subjected to uniaxial tension. a- well-
bonded composite, b- partially debonded composite and c- fully debonded composite.
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RESULTS AND DISCUSSION

Having examined a number of  more complex models for matrix behavior [4], we have finally
adapted the following relation for the inelastic strain rate:

n
0m

 =  a (b ) +c  +d =   -  
E

� exp �
�

ε σ σ ε
σ

with optimized constants a, b, c, d and E0m.

The debonding process modeled with the help of equations 1, 2 and 6 using the materials
constants of neat and filled polypropylene (Table 2) and several arbitrarily selected values of
K and B leads to stress strain curves shown in Fig. 5. Two extreme cases are considered:

Table 2: Parameters used to calculate the initial
composite modulus E0c from equation 3. GB: glass beads.

Parameters PP/GB PP/Talc PP/CaCO3 PA6/GB

E0m (GPa) 1.62 1.71 1.71 0.88

A1 1.68 5.62 2.60 1.90

B1 0.85 1.48 1.21 1.03

ψ 0.60 0.33 0.58 1.04

Fig. 5: Stress-strain curves calculated using equations 4.9 and 4.14 (see text): m: matrix, b:
fully  bonded composite, d: fully debonded composite. Curves 1 to 5 were calculated
using  following values of constants K and B, 1: K=3.04 10-2 MPa-1 s-1, B= 0, 2: K=

2.03 10-3 MPa-1 s-1,B= 0,3: K= 6.80 10-4 MPa-1 s-1, B= 0, 4: K= 1.2 10-4 MPa-1 s-1, B=
0 and  5: K=2.03 10-14 MPa-1 s-1, B= 1 MPa-1.



Volume V: Textile Composites and Characterisation

V - 838

When the value of the exponential term constant B is set to 0, the debonding rate is

proportional to the effective stress σ- . The measured stress σ vs ε function deviates from that
of the fully bonded composite at a relatively low strain and moves to the completely debonded
state over a broad range of strains (see also Fig. 5 for the corresponding φd  vs ε curves). With
a high value of K (curve 1) the σ vs ε curve of the composite will cross that of the matrix
when the matrix is still elastic and join that of the debonded composite at a strain well below
the yield. The value of K used to draw curve 2 in Fig. 5 was selected so that the debonding
process would be complete in the range of strains studied experimentally (0 to 8%). In this
case the stress strain curve reaches a maximum at about 1.5% strain when about a third of all
filler particles have debonded.

With a very high value of B the debonding will occur at nearly constant effective stress ( σ- ).
Curve 5 corresponds to this case. The stress strain curve (σ vs ε) follows that of a well bonded

composite until the onset of debonding (with the combination of K and B used at σ = σ-  ³ 32
MPa). With the reduction of the load bearing section the applied (measured) stress (σ)

decreases (while  σ-  = const) until the fully debonded state is reached at σ = 18 MPa and ε =
6%). The apparent “yield” of the composite (maximum of the value σ vs ε curve) corresponds
to the onset of debonding rather than to the inherent yield of the matrix material. The
corresponding φd vs ε curves are shown in Fig. 6.

The shapes of these curves suggest that the Bartenev type equation can cover the range of
situations likely to occur in glass bead filled viscoelastic materials. The extreme case of the
debonding occurring at constant effective stress (curves 5, Figs. 5-6) will certainly not be
found in real materials where the dispersed phase distribution is at best uniformly random,
particles are of different sizes,  local stress fluctuations are caused not only by the material
inherent heterogeneities but also by residual stresses which vary throughout the thickness, and
where the debonding will therefore occur over a broader range of stress and strain.

Fig. 6 Debonded filler fraction φd calculated using equations 1 and 6 as a function of strain
ε. The curves are numbered as in Fig. 5.



Proceedings of ICCM–11, Gold Coast, Australia, 14th-18th July 1997

V - 839

Fig. 7 Stress  strain curves, predicted by the model and experimental (-----) of 20 vol. %
filled PP. 1- glass beads, 2-talc and 3- CaCO3. T- treated  beads.

Fig. 8 Stress  strain curves, predicted by the model and experimental (-----) of 25 vol. %
filled PA6. T- treated  beads.

The stress strain curve of filled material consisting of a matrix defined by equation 2 and
undergoing the debonding process (eqs. 2 and 6) can be calculated and compared to
experimental stress strain curves. Optimized values of K and B are listed in Table 3 for filled
polypropylene and filled polyamide 6. The value of the constant K is affected by particle
shape and traitment. On the other hand, the exponential term constant B also changes with the
particle shape and treatment. The agreement between the experimental stress strain curves and
those computed using the procedure described in this paper is quite good (Fig. 7 for
polypropylene, glass  beads, talc and CaCO3, φ=0.2 and Fig. 8 for glass bead filled polyamide
6, φ=0.25). It confirms that the Bartenev equation can be used to describe the debonding
process not only when the matrix is elastic [12] but also when the composite non-elasticity is
caused by a combination of the debonding and of the matrix viscoelasticity. Moreover, the
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Bartenev equation appears to be able to cover the cases of both complete and partial
debonding (polypropylene and polyamide 6 respectively).

Table 3 :  K and B values of 20vol. % filled polypropylene (PP) and
25vol. % filled polyamide 6 (PA6) .T-treated beads.

CONCLUSION

The stress-strain behavior of filled polymer is modeled by using a Bartenev type relation for
the time dependence of the filler matrix interface strength and by considering the gradual
transformation of the initially well-bonded composite into foam which take account the
matrix viscoelasticity. A good agreement was achieved between calculated and experimental
data.
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