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SUMMARY

This paper reports an investigation on the impact resistance and damage characteristics 
of Glare laminates under low velocity impact loading. A series of impact tests, based on 
ASTM D7136 standard, with different energies were conducted on three types of Glare 
laminates, namely Glare4/3, Glare3/2 and GlareWB3/2. In addition to single impact tests, 10 
and 20 successive impacts were applied to investigate the effect of repeated impacts on the 
behavior of laminates. Experimental results show that layout sequence and interfacial adhesive 
bonding have a considerable effect on the impact behavior of Glare laminates.
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INTRODUCTION
Fiber metal laminates (FMLs) are considered as advanced aerospace structures due 

to their higher fatigue resistance and lower density in comparison with monolithic 
aluminum sheets [1]. As it has been emphasized by Gunnink et al, the prospect of a 
possible 20% weight reduction for aircraft structures was the prime driver behind the 
Glare development [2]. Using 793m2 Aluminum-Glass/Epoxy (Glare) in the fuselage of 
Airbus A380, for example, enhances the mechanical properties and at the same time 
reduces the mass of airplane by almost 800 kg [3]. So, several researches have been 
done in order to investigate mechanical behavior of this important material. Alderlisten 
et al. has worked on fatigue behavior of Glare [4-8]. J. Sinke has studied on 
manufacturing methods of Glare parts and structures. His research show that
manufacturing of Glare structures are more like manufacturing of metal sheet structures 
rather than polymer composites ones [9]. Blast behavior of Glare has been 
comprehensively studied by Cantwell et al [10-14]. Caprino et al have done 
comprehensive research on low-velocity impact behavior of Glare laminates [15, 16]. 
Their studies show that impact resistance of Glare is much better than galss- and 
carbon-reinforced plastics, but weaker than monolithic metal sheets with the same 
thickness. Delamination between composite and Aluminum layers was reported as the 
main cause of this weakness. Alemi Ardakani et al. developed a solution for this 
problem by creating ALOOH fuzzes on aluminum surfaces which leads to increase of 
the bonding area [17].

mailto:mohammad.alemi@gmail.com
mailto:aafaghi@ut.ac.ir
mailto:parsaiyan.hadi@gmail.com


In this study, a comprehensive experimental work is done on the impact behavior of 
the mentioned novel fabricated Glare laminates. For this purpose, aluminum surface 
treatment, number of layers, number of repeated impacts and energy of impact have 
been chosen as variant parameters. 

COMPOSITE PRODUCTION
Glare 3/2 laminates consisting of three 0.3 mm thick Aluminum sheets and two E-

glass/epoxy (GFRP) plies were fabricated using a hand-lay up procedure (Fig.1). The 
nominal weight fraction of fibers in GFRP was kept constant at 60%. The plies were 
laminated in such a way that the warp and weft directions were parallel to the edges of 
the laminates. The plates were then post-cured in an oven at 100°C for 4 hours after 
they had been cured under 15 kPa pressure for one day at room temperature. These 
laminates were then cut up to 100×150 mm rectangular specimens.

Fig 1: schematic figure of Glare 3/2

The manufacturing process of Glare laminates was: a) removing the thin aluminum 
oxide film from the surface of aluminum with 1: immersing Al sheets in Methyl Ethyl 
Ketone (MEK) for degreasing, 2: water break test for inspection of cleaning procedure,
3: hand abrasion with 400 and 200 grit aluminum-oxide papers respectively, to create 
macro roughness, and 4: etching in alkaline, b) rinsing in hot water and then etching Al 
sheets in sulfochromic solution (FPL-Etch) based on ASTM D2674 [18] and D2651 
[19] standards, c) creating a fuzzy layer of aluminum oxyhydroxide (ALOOH) on Al 
surface  and d) coating aluminum surfaces with an organosilane adhesion promoter, γ-
Glycidoxypropyltrimethoxy silane (γ-GPS) to improve the strength and durability of 
adhesion followed by drying process in an oven at 100Cْ for 60 min. In order to study 
the role of interfacial adhesion on impact behavior of Glare, several specimens were 
manufactured with a weaker adhesion bonding named GlareWB. In this group of 
materials, aluminum surface was prepared without neither growing ALOOH nor using 
adhesive promoter.

LOW VELOCITY IMPACT TEST

A series of drop weight impact tests were done based on ASTM D7136 standard
[20] with 4 gripper clamps and 1cm2 tips area. These tests were conducted on more than 
50 specimens comprised of monolithic 1050 aluminum and 200g/m2 E-glass plain 



woven layers with 3/2 (3 aluminum and 2 GFRP layers) and 4/3 (3 Al and 2 GFRP 
layers) layouts. Although mass and geometry of the projectile were constant, impact 
energy due to falling height varied between 7.5, 10 and 20J. Moreover, to investigate 
the effect of repetition of impact, the test repeated for 10 and 20 times with impact 
energy of 1J. Damage characteristics were evaluated by data analysis and image 
processing method. Table.1 and Fig. 2 show characteristics and shape of the projectile,
respectively. 

Table 1: Characteristics of Projectile

Diameter  Tip Shape  Net 
Weight  

Material

12.7 mm 
(0.5 in)  

Hemispherical  7.5 kg  Steel 316  

Fig 2: projectile figure

RESULTS

Tests were conducted with a drop weight impact testing machine with a 50 kHz 
piezoelectric sensor. The force-time data for Glare laminates subjected to 20J, 10J and 
7.5J impact energies are shown in Figs. 3-5, respectively. In all cases, GlareWB 3/2
shows somehow lower resistance compare to that of Glare 3/2. Figs. 6-8 illustrate 
damage zone of Glare laminates after 20J, 10J and 7.5J impact tests. Considering force-
time diagrams with these figures, it can be seen for specimens with full penetration, i.e. 
Glare 3/2 and GlareWB 3/2 under 20J impact energy, force-time diagram shows two 
peaks points. The first peak is due to the resistance of composite laminate against 
projectile penetration. Fiber breakage, delamination, fracture of polymer and aluminum 
layers and crack growth are the main mechanisms that consume the energy of projectile. 
The second peak is arising because of friction due to increasing of contact area. Figs. 3-
5 show that Glare 4/3 has exerted the most force to projectile in comparison to that of
Glare 3/2 and GlareWB 3/2. Based on these observations it can be concluded that Glare 
4/3 is the strongest material under all conditions. Comparing Glare 3/2 with GlareWB 
3/2 diagrams, it can be identified that Glare 3/2 is stronger than GlareWB 3/2 and has 
approximately exerted 1.6 times more force to the projectile than that of GlareWB 3/2. 
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Fig 3: Force-time diagram of Glare laminates subjected to 20J impact energy
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Fig 4: Force-time diagram of Glare laminates subjected to 10J impact energy.
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Fig 5: Force-time diagram of Glare laminates subjected to 7.5J impact energy.

Figure.6 shows front, back and lateral faces of specimens subjected to 20J impact 
energy. Only Glare 4/3 was not penetrated. Just two cross cracks aligned to fiber 
directions can be seen on the rear face of Glare 4/3. Glare 3/2 and Glare WB 3/2 have 
been fractured and penetrated completely. Extensive interfacial debonding has also been 
occurred. Image processing analysis show that damaged area in GlareWB 3/2 is 1.5 
times greater than that of Glare 3/2. 



            Back                 Lateral                Front
Fig 6: The Front, Lateral and Rear surfaces of the impact-damaged

specimens under impact energy of 20J.

Fig.7 shows damaged specimens subjected to 10J impact energy. Same as 20J, Glare 
4/3 have shown the best resistance and only a small crack is observed on its rear face. 
The cross crack aligned to fiber direction shows a considerable damage on Glare 3/2. 
GlareWB 3/2 has shown the weakest resistance and has fractured completely. Fig.8 
illustrates a similar behavior for 7.5J impact tests. Both rear and front faces of GlareWB 
3/2 has been damaged and fibers also have been fractured completely. 



            Back                 Lateral                Front
Fig 7: The Front, Lateral and Rear surfaces of the impact-damaged

specimens under impact energy of 10J.

            Back                 Lateral                Front
Fig 8: The Front, Lateral and Rear surfaces of the impact-damaged

specimens under impact energy of 7.5J.



Damaged areas of all specimens were evaluated by image processing method. Figs.
9-10 show damaged area of front and rear faces, respectively. It is obvious that the 
novel manufacturing method, specially creating ALOOH fuzzes on Al surface, has 
played a vital role in increasing of the impact resistance of Glare sandwiches. If A, B 
and C stand for characteristic ratio of damaged area in 

3/ 2
3/ 2

Glare
GlareWB ,

4 / 3
3/ 2

Glare
Glare  and

4 / 3
3/ 2

Glare
GlareWB , respectively, for the front 

face damage area for A, B and C are 0.28, 0.25 and 0.1 while for the back face damage 
area these values are 0.31, 0.21 and 0.06, respectively.
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Fig 9: The Front face damaged area of Glare laminates under
impact energies 20, 10 and 7.5J.
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Fig 10: The Rear face damaged area of Glare laminates under
impact energies 20, 10 and 7.5J.

Repeated impacts

Figs. 11-12 show Glare laminates under 10 and 20 repeated impacts, respectively. 
All tests were conducted with 1J impact energy. It is observed that Glare 4/3 resisted 10 
successive impacts and only a very small surface crack has been revealed on its rear 
face. But, a very large cross crack can be seen on rear surface of Glare 3/2. Continuing 



the repetition of impacts up to 20 times, the crack in Glare 4/3 didn’t grow considerably, 
but Glare 3/2 resisted only 17 successive impacts and after 17th impact the projectile 
was penetrated completely. From these figures one can conclude that the resistance of 
Glare laminates against repeated impact loading is very dependant on the laminate 
thickness.    

            Back                 Lateral                Front
Fig 11: The Front, Lateral and Rear surfaces of the impact-damaged specimens under 10 

successive impacts of 1J impact energy.

            Back                 Lateral                Front
Fig 12: The Front, Lateral and Rear surfaces of the impact-damaged specimens under
successive impacts of 1J impact energy. (Glare 4/3 has resisted against 20 successive

impacts, however Glare 3/2 has been fully penetrated after only 17 impacts)

CONCLUSION

Experimental results show that for achieving high impact resistance, the use of 
silane coupling agent such as γ-GPS and creating ALOOH fuzzes on Al surface is 



necessary. Damaged area of Glare laminates with poor interfacial adhesive bonding was
much larger than that of with good bonding. In some cases, the ratio between damaged 
areas of these laminates was up to 3.5 times higher for GlareWB laminates. Moreover, it 
was shown that the impact behavior of Glare laminates is very dependant on their
thickness. Damaged area in thin Glare 3/2 was 3 to 5 times larger than thick Glare 4/3.
In repeated impact loading, the sensitivity of impact resistance of a Glare laminate to its 
thickness is more considerable.
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