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1   Introduction  

Many studies have been conducted for various 
cellular mUUaterials, such as truss Periodic Cellular 
Metal (PCM). Because they provide not only high 
strength per density, but also make one to use 
interior space for additional function like heat 
transfer, catalyst support and storage. The pyramid 
truss [1], octet truss [2], and woven textile 
topologies [3] have been studied about mechanical 
performance, optimal designs for specific 
applications, and fabrication techniques. 

Kagome truss is a recent addition to lattice truss 
structures. Since the truss elements of the Kagome 
truss PCM have half the length of those of the Octet, 
it has excellent resistance to buckling which is a 
main failure mode of the truss structure, and also has 
high internal space utilization. [4, 5] 

Lee et al. [6] introduced a new technique for 
fabricating multi-layered Kagome truss-like 
structures using wires. Helically formed wires were 
systematically assembled in 6 directions evenly 
distributed in the 3D space, and then the cross points 
among the wires were fixed by brazing to be a 
robust Kagome truss-like PCM which was named 
WBK after Wire-woven Bulk Kagome in Fig.1. 

Since the mechanical strength and stiffness of 
WBK have been theoretically estimated on basis of 
assumption that WBK is composed of straight struts, 
[7] the analytic solutions sometimes give substantial 
errors compared with experimental results. In fact, 
WBK is assembled with helically-formed wires. 
Consequently, the struts are curved, which resulted 
in errors in estimation based on the previous 
theoretical solution. Recently, Queheillalt et al. [8] 
derived the equation considering waviness effect of 
strut to predict the mechanical performance about 
the metal textile lattice core. The wires were 
modeled to have a sinusoidal shape. They reported 
that the strength and stiffness of textile core were 

20% lower than those of collinear core due to the 
waviness effect. 
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Effect 

In this study, to improve the theoretical solutions, 
the truss waviness and brazed portion are taken into 
account to estimate the strength and stiffness of 
WBK. And the results are compared with those 
measured by experiments and estimated by finite 
element analysis. 

2  Basic Analytical Solutions 

Lee at el. [9] derived the analytic solution of 
compressive strength, assuming that WBK has an 
ideal Kagome truss structure. Fig.2 shows unit cells 
of the ideal Kagome truss and the WBK. 
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In this equation,  and E are yield strength and 
Young’s modulus of the wire material, d is the 
diameter of a wire and c is the length of a strut. Et 
defined the slope (∂σ/∂ε) on stress-strain curve and k 
is the constants depending on the boundary 
conditions at the ends. They also derived the 
equivalent Young’s modulus of the ideal Kagome 
truss. 
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3  Modified Analytical Solutions 

3.1 Maximum bending moment 

Park et al. [10] calculated the maximum bending 
moment in a helically formed strut of WBK core 
taking account of the constraints at the both ends due 
to brazed filler metal. They applied Prager’s 
equation [11] for failure strength, w of a strut 
subjected to bending moment and axial force. The 
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equivalent compressive strength is calculated as 
replacing o with w to consider the waviness effect 
of the strut Eq.(3). 

We derive the moments considering not only the 
axial force and bending moment but also the shear 
forces acting one of out-of-plane struts in a 
tetrahedron consisting WBK truss core in Fig.3(a). 
The axial and shear forces in the strut are related to 
each other by elementary beam theory as follows 
[12]; See Fig.3(b). 
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A helical wire is projected as trigonometric 
functions on 2-D planes in Fig.3(c). For each of the 
axes, My(z), Mx(z), T, The following equations are 
derived: 
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Here, a is the radius of the helix, B is the height of 
the brazed portion, c represents the length of the 
element. C1, C2, C3, C4 are constants calculated by a 
fixed boundary conditions under the influence of 
brazed portions. To simplify the formula by λ, J as a 
substitute, R' is as follows: 
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Finally, the equivalent maximum bending moment 
can be calculated by the following equation: 
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3.1 Equivalent compressive strength 

Prager’s equation is used to determinate whether 
the strut fails or not. We also used the equation 
combined the axial force and the bending moment 
on the assumption that perfectly plastic behavior 
occurs in the wire. 
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Here, σys is the yield strength of the material 
(200MPa in SUS304), d and A are the diameter and 
cross section area of the strut. 

Because the force and moments are expressed as 
functions of the Fa in all the above equations, we 
calculate the critical value of the axial force, Fa,cr , to 
satisfy Prager criterion by substituting Eq. (10) into 
Eq. (11). Then, the critical vertical load, Pcr, applied 
at the top of a tetrahedron consisting WBK in 
Fig.3(b) can be calculated. Finally, the equivalent 
compressive strength follows as: 
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3.2 Equivalent Young’s modulus 

Park et al. applied Castigliano’s second theorem 
to obtain Young’s modulus of the curved strut, Ew. 
They also calculated the equivalent Young’s 
modulus by replace E in Eq. (4) with Ew. In the 
similar way, we applied Castigliano’s 2nd theorem to 
derive the displacement at the top of the helically 
formed strut, δa. 
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Here, Fa axial force acting on the wire, c is an 
element length of the tetrahedral configuration and d 
is the diameter of the wire, B is the height of the 
brazing part, I is the moment of inertia, Gs is the 
shear modulus, J is the polar moment of inertia, Es is 
Young’s modulus of the wire. And we calculated the 
equivalent Young’s modulus Ee of WBK core 
follows as: 
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4  Finite Element Analysis 

Finite element analysis was performed using the 
Periodic Boundary Condition (PBC) in order to 
verify the equivalent compressive strength and 
Yong’s modulus. Fig.4 shows the PBC model of the 
WBK unit cell composed the wires and brazed filler 
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metal. We made the finite element models using a 
commercial graphics code as PATRAN 2005 and 
performed the finite element analysis using 
ABAQUS ver. 6.9. The wire and brazing part were 
simulated solid elements of 15nodes (C3D15) and 
the model had a total of 8,280 elements and 31,284 
nodes. As show in Table.1, the models with four 
types of slenderness ratio (d/c) were analyzed. In the 
models the length of struts differs with the diameter 
kept constant. The yield stress was σyp =200MPa, the 
Young’s modulus was E=200GPa, and the Poisson’s 
ratio was assumed to be υ=0.3. The material 
properties was modeled to be elastic-perfectly 
plastic to clarify the yield point. 

5.  Results and Comparison 

By using the above analytic solutions, i.e., Eqs. 
(12) and (14), the equivalent compressive strength 
and Young’s modulus of WBK were calculated as a 
function of d/c. The results were compared with 
them from finite element analyses and experiments 
in Figs. 5 and 6. The experiment results of the 
strength were based on the initial yield points 
observed in the compression tests on WBK cores 
made by SUS304 wire. [9]  

5.1 Equivalent compressive strength 

In Fig. 5, the results estimated by Eq. (12) are 
substantially lower than those by Eq. (3) for the 
ideal Kagome truss PCM but higher than those in the 
previous study by Park et al. [10]. The new results  
agree fairly well with those from the finite element 
analyses but the discrepancy with the experimental 
results tend to increase with the slenderness ratio, 
which seems to be attributed to material strain 
hardening of the SUS wires. 

5.2 Equivalent Young’s modulus 

In Fig. 6, the results estimated by Eq. (14) are 
also lower than those by Eq. (4) for the ideal 
Kagome truss PCM and higher than those calculated 
in the previous study by Park et al. [10]. The new 
results are constantly higher than those from the 
finite element analyses. The solution is derived from 
the elastic deformation of the out-of-plane struts 
only, but the deformation of in-plane struts is not 
considered. According to Park [13],  the deformation 
of in-plane struts induces 10% decrease in the 
stiffness. The discrepancy with the experimental 
results is irregular depending on the slenderness 

ratio. Also, we suspect that the experiments might 
have a technical problem. That is, in the experiments 
the displacement was not measured directly from an 
independent sensor installed on the specimens, but 
calculated by subtracting displacement due to 
compliance of the load track of the test system from 
the stroke measured at the bottom of the hydraulic 
ram. 

 

6. Conclusions 

In this study, the new analytic solutions of the 
equivalent compressive strength and Young’s 
modulus of WBK were derived considering 
waviness of the struts and brazed portion. The shear 
force as well as the axial force and moments acting 
in one of the three out-of-plane struts of the 
tetrahedron-like structure composing WBK were 
taken into account to predict a critical force acting at 
the top of the structure and in turn the equivalent 
yield strength. To verify the solution, the results 
calculated with the slenderness ratio of the struts 
(d/c) were compared with those from the finite 
element analysis performed using the PBC model 
and the experimental data. As the results, the 
following conclusions were drawn; 

 
i) The equivalent compressive strengths estimated 

by the solution agree fairly well with those from 
the finite element analyses but the discrepancy 
with the experimental results tend to increase 
with the slenderness ratio, which seems to be 
attributed to material strain hardening of the SUS 
wires. 

 
ii) The equivalent Young’s moduli estimated by the 

solution are constantly higher than those from the 
finite element analyses, which seems to be 
attributed to the deformation of in-plane struts 
which is ignored in the new solution.  
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Fig.1. WBK truss core. 

 

 
Fig.2. The unit cell of the ideal Kagome truss and 
the WBK truss including brazing part. 

 
Fig.3. (a) A single strut of WBK unit cell (b) sketch 
of deformation of a single strut of the WBK core 
under compression load (c) the configurations of 
half pitch of single wire projected on two 
dimensional planes except brazed part. 
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Fig.4. Finite element model of WBK unit cell with 
Periodic Boundary Conditions (PBCs) 
 
Table 1 The geometric parameters of the wires 
composing WBK used for finite element analyses 

Fig.6. Analytic solutions, FE Analysis and 
Experiment results of equivalent Young’s modulus 
of WBK truss core. 

 1 2 3 4 

d (mm) 0.78 0.78 0.78 0.78 Geometric 
parameters c (mm) 5.35 6.45 8.1 12.6 

 

 
Fig.5. Analytic solutions, FE Analysis and 
experiment results of equivalent compressive 
strength of WBK truss core. 
 


