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1  Introduction  
Periodic cellular metals (PCMs) have regular 

internal stUUructures, which give higher strength 
and stiffness per unit weight than metal foams with 
stochastic structures. Particularly, truss type PCMs 
have additional benefit coming from their open cell 
architectures for multi-function potential. Truss 
PCMs are classified as Pyramid[1], Octet[2], 
Kagome[3], as shown, and so on in Fig. 1. Wire-
woven Bulk Kagome(WBK) is a recent addition to 
PCMs [4-5]. WBK consists of wires and brazed 
joints among them. Helically formed wires are 
assembled in in-plane and out-of-plane directions, 
evenly distributed in the three-dimensional space to 
compose a Kagome truss-like structure with multiple 
layers. The slenderness ratio of the struts of WBK is 
a dominant factor determining relative density, 
compressive strength and Young’s modulus. From 
the review of literature, we can see that very few 
studies are available for the geometrical WBK 
models and their equivalent continua properties. 
Several researches have been conducted on 
structural behaviors of WBK. 

In this work, to get a better understanding of 
WBK structures and their mechanical characteristics, 
the geometrical concepts repeating unit cell/sub-unit 
cell are introduced. And also several geometrical 
parameters based on a WBK unit cell are suggested 
to get the three-dimensional volume. The orientation 
dependency on the elastic behavior of WBK 
assemblies is investigated hierarchically and 
numerically. 

2  Brazed Region 

2.1 Geometrical structure for WBK 

The WBK unit cell consists of 6-strands helically 
along the three-dimensional directions and brazing 
joints are conjugated with 3-helical wires. There are 
two different types of WBK. The concave type and 

convex type WBK can be obtained depending on 
wire-assembling sequence. Fig. 2 shows geometrical 
shape of concave WBK structure. Three helical 
wires in in-plane directions were defined as 1, 2 and 
3 wires, respectively. The other three helical wires in 
out-of-plane directions were defined as 4, 5 and 6 
wires, respectively. Interval angle is 60 degree 
among the wires in plane and 54.74 degree between 
in-plan and out-of-plane. One unit cell consists of 
seven sub-unit cells as shown in Fig. 3. 

2.2 Volume of brazed filler-metal 

Volume of brazed filler-metal was difficult to 
calculate at each wire cross point, exactly. 
Geometrical shape of brazed region is complicated. 
Fig. 4 (a) shows tetrahedral of ideal brazed region 
and (b) shows cross section of brazed region. To 
calculate of volume of brazed filler-metal considers 
big tetrahedron in cross section bottom and small 
tetrahedron in cross section top, including partly 
wires, as shown Fig. 5. And then, the volume of 
each region was calculated by using sub-unit cells 
analytically as shown in Eq. 1. Vw is partly wires 
volume including brazed filler-metal. 

wtbr VVV   (1) 

Eq. 2 shows the variable a´ in big tetrahedron. 
The a´ defines distance of apex to center of mass of 
a triangle. The Rh is helical radius and  is rotation 
angle of wire. 

   22 cossin  hh RRaa   (2) 

The brazed filler-metal has a shape similar to a 
tetrahedron with curved ridges. So, cross section of 
brazed filler-metal rotates along the helical wire 
shape as shown Fig. 4 (b). Variable B is height of 
brazed filler-metal. B was measured from WBK 
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specimen. Using Eq. 1 and 2, Vbr of brazed filler-
metal volume was given by Eq. 3. 
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Table 1 shows several geometrical parameters in 
sub-unit cell of 3D-model. Vbr is theoretical solution 
using Eq. 3 and Vcatia® is volume of brazed filler-
metal estimated using Catia® program.  

3 Equivalent Stiffness of WBK unit cell 

3.1 Compliance & transformation matrix  

The unit cell of WBK consists of seven sub-unit 
cells with a brazed region at each middle. So, 
equivalent stiffness of unit cell induces from one 
wire. Eq. 4 shows a compliance matrix of wire’s 
material property. 
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with 6 by 6 components as shown in Eq. 9.[6] So, 
equivalent stiffness [C]wire of one wire was converted 
into local material property [C]local using 
transformation matrix [T]. In other words, Eq. 8 and 
Eq. 9 show a transformation matrix [A] and [T] for a 
helically twisted wire. 
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(7)And then, the result is expanded to one wire, 
sub-unit cell and unit cell using transformation 
matrix successively. Eq. 5 shows total steps of the 
hierarchical modeling method to determine 
equivalent stiffness. An infinitesimal wire volume 
and a global coordinate are presented in Fig. 6. Eq. 6 
shows the x, y, z coordinates along the center line of 
one wire. The variables, r  and c , represent the 
rotation- and the crimp-angles.  

The sub-unit cell consist three wires crossing at 
brazing point. And each wire inclines and rotates 
from the global coordinate. The transformed position 
vector of helically twisted is dependant on the 
rotation and slope angle in the global coordinate.[7] 

The coordinate transformation is performed 
using the direction cosine matrix as shown in Eq. 7. 
Global coordinate defines the center of helical radius. 
On the other hand, local coordinate defines the 
helical center line of the infinitesimal wire. 
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Direction cosine matrix for z and y axis shows 
Eq. 8. And [A] matrix can be expanded to [T] matrix   
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3.2 Equivalent modulus matrix 

Fig. 7 shows wire element. The total number of 
elements is 9 and brazing height B is 1.7d. So, 
element number 4, 5 and 6 were included brazed 
region. It was an assumption that brazed region was 
rigid body. Therefore, element number 4, 5 and 6 
has zero compliance and infinite stiffness. Other 
parts material property is listed in Table 2. (SUS304) 
Consequently, equivalent modulus is Table 3. 

3.3 FEA for WBK unit cell 

Fig. 8 shows Periodic Boundary Condition 
(PBC) model. The model was made using Patran 
2005 and FEA was performed by ABAQUS ver. 6.9. 
The wire and brazed region have same material 
property. The element type was C3D15. The 
modulus of elasticity was 200GPa. Fig. 9 shows 
stress-strain curve of the FEA result. 

3.4 Comparison of hierarchical & numerical 
solution 

From this study, we have predicted the 
equivalent stiffness for WBK unit cells, as shown in 
Eq. 10 and Table3. Elastic moduli of 33 direction are 
very similar to each other. But, the shear moduli are 
different from each other. We guess that the error 
was caused by inadequate B.C.(boundary condition) 
of the PBC model. 

4 Conclusion 

In this work, the orientation dependency of the 
elastic behavior of WBK assemblies is investigated   
by the hierarchical approach and FEA. First of all, 
geometry of WBK is studied in detail. Also several 
geometrical parameters based on a WBK unit cell 
are suggested to get the three-dimensional volume. 
Therefore, volume of brazed region compares 
theoretical solution with that measured by Catia® 
modeling. 

And transformation matrix is defined using 
direction cosine. Also, FEA was performed on PBC 
model of WBK by ABAQUS program. And then, 
equivalent stiffness compared between hierarchical 
approach and numerical solution. 
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Table1. Geometrical parameters of sub-unit cell 
model and volume of brazed filler-metal 

(Unit:mm) 
c d B Vbr Vcatia®

8.1 0.78 1.326 0.2928 0.3200
 
Table2. Isotropic material property 

(Unit:GPa) 
E11 E22 E33 G12 G23 G31 v 
200 200 200 86 86 86 0.3

 
Table3. Result of equivalent stiffness, estimated by 
the hierarchical approach and FEA 

(Unit:MPa) 
 E11 E22 E33 G12 G23 G31 

Theory 345 329 388 135 133 135 
FEA - - 381 - 74 - 

 

 
 

Fig.1. Configurations of unit cells of ideal trusses (a) 
pyramid (b) octet, and (c) Kagome 
 

 
 

Fig.2. Geometrical shape of a tetrahedral wire cell 
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Fig.3. Hierarchical shapes of a WBK assemble 
 

 

 
 

Fig.4. (a) Tetrahedral of ideal brazed filler-metal, (b) 
cross section of brazed filler-metal 
 

 
 
Fig.5. Brazed region of (a) bottom cross section, (b) 

top cross section 

 
 
Fig.6. (a) Infinitesimal wire volume, (b) helically 
twisted wire 
 

 

 
Fig.7. Brazed region in the one wire 

 

 

 
Fig.8. Finite element model of WBK unit cell 
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Fig.9 Result of FE analysis 
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