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1  Introduction 

Ultra-fine plate-fin structures for heat exchangers, 
manufactured by stacking thin metallic plates and 
fins alternately (Fig. 1) offer high heat exchanger 
efficiency, because their small structures provide 

large heat-transfer areas. Thus, they are expected to 
be used in the heat exchangers of high temperature 
gas-cooled reactor gas-turbine (HTGR-GT) systems 
[1,2]. The HTGR-GT systems are regarded as some 
of the most promising power generating systems 
because of their excellent balance between power 

generation and economic efficiency [3]. In the 
systems, helium is employed as a working fluid, 
which becomes extremely hot and can reach 950 °C . 
It is therefore important to analyze not only elastic 
behavior but also inelastic behavior of ultra-fine 
plate-fin structures. 

In general, fins in an ultra-fine plate-fin structure are 
not necessarily stacked in such a precisely-aligned 
position as illustrated in Fig. 1(a), but can have 
misalignment randomly as shown in Fig. 1(b). Thus, 
when analyzing the elastic/inelastic behavior of 
ultra-fine plate-fin structures, such laminate 

misalignment should be taken into account. So far, 
however, the effects of laminate misalignment on 
the elastic/inelastic behavior of plate-fin structures 
have not been discussed, although there have been 
some reports on elastic/inelastic analysis of plate-fin 
structures [1,2,4]. For example, Kawashima et al. [2] 

performed the elastic-plastic analysis of ultra-fine 
plate-fin structures based on the finite element 
method (FEM). In the analysis, however, by 
referring to their test specimens, they adopted an FE 
model which had only three layers and two columns 
of fins without laminate misalignment. More 

recently, Tsuda et al. [4] analyzed the macroscopic 
elastic-viscoplastic behavior of ultra-fine plate-fin 
structures based on a homogenization technique 
using the FEM, and succeeded in developing a 
macroscopic constitutive model which can 
reproduce the homogenized elastic-viscoplastic 

behavior of plate-fin structures. In their study, 
however, they used a unit cell approach with the 
periodic boundary condition, resulting in no 
consideration for laminate misalignment. 
In this study, the elastic-viscoplastic analysis of 
ultra-fine plate-fin structures with random laminate 
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Fig. 1. Ultra-fine plate-fin structures (a) without laminate misalignment, 

(b) with random laminate misalignment. 
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misalignment is performed using the time-dependent 

homogenization theory [5] in conjunction with the 
substructure method [6]. For this, a unit cell of a 
plate-fin structure with randomly misaligned N 
layers of fins is defined. The Y-periodic boundary 
condition is used on the side boundary surfaces of 
the unit cell. On the other hand, the boundary 

condition for periodic laminate misalignment 
proposed by the authors [7, 8] is applied on the top 
and bottom boundary surfaces. The unit cell is then 
divided into N substructures to introduce the 
substructure method into the time-dependet 
homogenization theory. Using the present method, 

elastic-viscoplastic behavior of ultra-fine plate-fin 
structures with randomly misaligned 10-100 layers 
is analyzed to investigate the effects of laminate 
misalignment on the elastic-viscoplastic properties 
of plate-fin structures. 

 

2  Homogenization Theory for Plate-Fin Structures 

with Random Laminate Misalignment 

2.1 Ultra-Fine Plate-Fin Structure with Random 

Laminate Misalignment and Its Unit Cell 

We consider an ultra-fine plate-fin structure with 

random laminate misalignment illustrated in Fig. 2, 
in which, exactly, a plate-fin structure with 

randomly laminated N fin layers is repeated in the 

2y -direction with periodic misalignment. The plate-
fin structure has the same shape infinitely in the 

3y -
direction. 
For the ultra-fine plate-fin structure with random 
laminate misalignment, a unit cell Y  and the 
Cartesian coordinates 

iy  ( 1, 2, 3)i   are defined as 

shown in Fig. 2(a). The original Y -periodic 
boundary condition is used on the side boundary 
surfaces of Y , while the boundary condition for 
periodic laminate misalignment [7, 8] is applied to 
the upper and bottom boundary surfaces, which will 
be fully described in the following subsection. 
 

2.2 Time-Dependent Homogenization Theory 

Microscopic stress and strain fields are denoted by 

ij  and ij , respectively. Then, the equilibrium of 

ij  can be expressed in a rate form as 

 , 0ij j  , (1) 

where (  )  and ,(  ) j  indicate the differentiation 
regarding t  and jy , respectively. The base material 
of the plate-fin structure is assumed to exhibit linear 
elasticity and non-linear viscoplasticity as 

characterized by 

 ( )ij ijkl kl klc    , (2) 

where ijklc  and kl  stand for the elastic stiffness and 

Fig. 2. Ultra-fine plate-fin structure with random laminate misalignment; 

(a) whole structure and its unit cell Y, (b) unit cell Y and substructures Ai. 
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viscoplastic strain rate of the base material, 

respectively. 
Let ( , )i tyv  be an arbitrary variation of the 
perturbed velocity field defined in Y  at t . Then, the 
integration by parts and the divergence theorem 
allow Eq. (1) to be transformed to 

 
, 0ij i j ij j i

Y
dY n d


    v v  , (3) 

where   denotes the boundary of Y , and jn  

indicates the unit vector outward normal to  . 
Now, consider that   is divided into three parts, 

A , 
B  and 

C , as shown in Fig. 2(b). This allows 
the boundary integral term in the above equation to 
be divided into three terms: 

.
A B C

ij j i

ij j i A ij j i B ij j i C

n d

n d n d n d



  

 

     



 



  

v

v v v



  
(4) 

First, focus on the first term on the right-hand side in 
the above equation, which is for 

A . Figure 2(b) 
shows that the distributions of ij  and iv  on AF and 
those on CD are identical, respectively, because the 
internal structure of the plate-fin structure has 

periodicity in the direction indicated by the dashed 
lines as shown in Fig 2(a). Whereas, jn  takes 
opposite directions on AF and CD. As a result, the 
first term on the right-hand side in Eq. (4) becomes 
zero. The same situation exists on FE and BC, which 
belong to B , as depicted in Fig. 2(b). This allows 

the second term on the right-hand side in Eq. (4) to 
be zero. By contrast, on AB and ED, the usual Y -
periodicity is satisfied as seen from Fig. 2(a). Hence, 
the third term on the right-hand side in Eq. (4) also 
becomes zero. Consequently, Eq. (4) vanishes, and 
Eq. (3) results in: 

 , 0ij i j
Y

dY  v . (5) 

This resulting equation has the same form as that 
obtained in the previous study [5]. Therefore, the 
evolution equation of microscopic stress ij  and the 
relation between macroscopic stress rate ij  and 
strain rate klE  are derived in the same procedure as 
the previous study [5]: 
    , ,

kl

ij ijpq pk ql p q kl ijkl kl k lc E c         ,
 

(6)
 

    , ,

kl

ij ijpq pk ql p q kl ijkl kl k lc E c         , (7) 

where ij  indicates Kronecker’s delta, and  
designates the volume average in Y  defined as 

1# | | #
Y

Y dY  , in which | |Y  signifies the 
volume of Y . Moreover, kl

i  and i  in Eqs. (6) and 

(7) denote the characteristic functions determined by 

solving the following boundary value problems: 

 
, , ,

kl

ijpq p q i j ijkl i j
Y Y
c dY c dY  v v , (8) 

 
, , ,ijpq p q i j ijkl kl i j

Y Y
c dY c dY  v v . (9) 

It should be noted that, when solving the above 
problems, the periodicity on AF and CD, FE and BC, 
and AB and ED are imposed on kl

i  and 
i . 

 

2.3 Substructure Method  

First, the unit cell Y  is divided into substructures 
iA  

( 1, 2, , )i N   as shown in Fig. 2(b). In addition, 
the amount of laminate misalignment between 

iA  is 
defined as 

id  ( 1, 2, , )i N  . Then, the boundary 
value problems for the individual substructure in a 

finite element discretized form are derived as 
follows [6]:

 

 ,( 1, 2, , )kl kl

i i N kχ f  , (10) 

 ,( 1, 2, , )i i i N kφ g  , (11) 

where kl

iχ  and 
iφ  denote the nodal vector of 

characteristic functions in iA , and k , kl
f  and ig  

have the following expressions: 

 T

A
dA k B CB , (12) 

 Tkl kl

A
dA f B C , (13) 

 T

i

kl

i i
A

dA g B C β . (14) 

Next, the components of kl

iχ  and iφ  are respectively 

divided into two parts, ( )kl

i


χ  and ( )kl

i


χ , and ( )

i


φ  

and ( )

i


φ , where ( )( )   and ( )( )   represent vectors 

or matrices for the internal and the boundary nodes 
of iA , respectively. Then, the boundary value 
problems for iA , Eqs. (10) and (11), are rewritten 
into the following equations: 

 
   

   

( ) ( )

( ) ( )

kl kl

i

kl kl

i

   

  

      
    

      

k k χ f

χ fk k
, (15) 

 
   

   

( ) ( )

( ) ( )

i i

i i

   

  

        
    

         

k k φ g

φ gk k
, (16) 

where ( )kl

i


χ  and ( )

i


φ  can be expressed as 

      
1

( ) ( ) ( )kl kl kl

i i

   


 χ k f k χ , (17) 

      
1

( ) ( ) ( )kl kl

i i i

   


 φ k g k g . (18) 

The eliminations of ( )kl

i


χ  and ( )

i


φ  from Eqs. (15)

and (16) using the above equations respectively 
yields 



 ( ) ( ) ( )kl kl

i

  k χ f , (19) 

 ( ) ( ) ( )

i i

  k φ g , (20) 

where ( )
k , ( )kl 

f  and ( )

i


g  are expressed as 

follows: 

       
1

( ) ( )    


 k k k k k , (21) 

     
1

( ) ( ) ( )kl kl kl   


 f f k k f , (22) 

     
1

( ) ( ) ( )

i i i

   


 g g k k g . (23) 

Finally, Eqs. (19) and (20) are respectively 
assembled into the following equations, which are 
boundary value problems with respect to just the 
boundary nodes of all substructures: 

 ( ) ( ) ( )kl kl  K χ F , (24) 

 ( ) ( ) ( )  K φ G , (25) 

where ( )
K  stands for the matrix consisting of ( )

k , 
( )kl 

F  and ( )
G  indicates the vector consisting of 

( )kl 
f  and ( )

i


g . Moreover, ( )kl 

χ  and ( )
φ  denote 

the nodal vectors of the characteristic functions at 
the boundary nodes of substructures. The 

characteristic functions ( )kl 
χ  and ( )

φ  are 
determined by solving Eq. (24) and (25) with 
appropriate boundary conditions. Then, the 
characteristic functions at the internal nodes, 

( )kl

i


χ and ( )

i


φ , are calculated using Eqs. (17) and 

(18). 
 

3  Analysis Conditions 

In the present analysis, macroscopic stress-strain 

relations and macroscopic compressibility of ultra-
fine plate-fin structures with random laminate 
misalignment at 900°C were analyzed using the 
above-mentioned theory.  

Six cases of N (the number of randomly laminated 
fin layers) were considered, i.e. 10N  ， 20 ， 40 ，
60 ， 80  and 100 . For each case, 10 patterns of 
random misalignment were prepared using random 
numbers generated by a computer. 
Substructures 

iA  were defined as illustrated in Fig. 3, 

and were divided into four-node isoparametric 
elements. The substructures were two-dimensional 
rather than three-dimensional, and the generalized 
plane strain condition was considered, because the 
plate-fin structures were assumed to have uniform 
and infinite material distribution in the 

3y -direction. 

A base metal for the plate-fin structures was 
Hastelloy X, which was a Ni-based alloy with 
excellent heat resistance. The Hastelloy X was 
regarded as an isotropic elastic-viscoplastic material 
characterized by the following constitutive equation 
[4]:

 

 0

0 0

1
1 3

2

eq ij

ij ij kk ij

n
s

E E

 
    

 


 

    
 

   , (26) 

where, E  and   indicate elastic constants, 
0  and 

0  represent reference strain rate and reference 

stress, respectively, n  is a material parameter of 
viscoplasticity, ijs  stands for the deviatoric part of 

ij , and 1 2[(3/ 2) ]eq ij ijs s  . Material constants used 
are listed in Table 1 [4]. 
Macroscopic uniaxial tension in the 1y -direction at a 
constant strain rate -3 -110 [s ]  was applied to the plate-

fin structures. 
 

4  Results of Analysis 

First, Fig. 4(a) shows the macroscopic stress-strain 
relations of the plate-fin structures with random 

laminate misalignment subjected to uniaxial tension 
in the 1y -direction. However, only the results for 

100N   (solid lines) are shown in the figure due to 
limitations of space. In addition, the figure contains 
the results for 1N   (dashed lines), i.e. the case of 
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Fig. 3. Substructures iA  and finite element mesh. 
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Table 1. Material constants of Hastelloy X 
at 900°C [4].
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no laminate misalignment ( 0d  ) and the case of 

periodic laminate misalignment with half width of 
the substructure ( / 2d l ), where l  indicates the 
width of the substructure. It can be seen from Fig. 
4(a) that the viscoplastic flow stresses for the ultra-
fine plate-fin structures with random laminate 
misalignment are situated between 0d   and 

/ 2d l  for all the 10 patterns. This suggests that 
random plate-fin structures exhibit intermediate 
elastic-viscoplastic behavior between 0d   and 

/ 2d l , and that the results for 0d   and / 2d l  
can be the lower and upper bounds, respectively. 
Next, Fig. 4(b) shows the relations between 

macroscopic strains in the 1y -direction (loading 
direction), 

11E , and in the 
2y -direction, 

22E , i.e. 
macroscopic compressibility for the 

1y -direction 
loading. This figure contains the results for 100N   
(solid lines) and 1N   (dashed lines). In addition, 
the dashed-dotted line indicates the isotropic 

incompressible case. As seen from the figure, 
macroscopic compressibility exhibits the same 
tendency as observed in the macroscopic stress-
strain relations shown before, i.e. all the 10 patterns 
of random laminate misalignment result in the 
intermediate behavior between 0d   and / 2d l . 

Finally, Figs. 5(a) and 5(b) respectively show the 
macroscopic stress 11  and the macroscopic strain 

22E  at 11 0.004E   when changing N. For 1N  , the 
results for five cases of periodic laminate 
misalignment, i.e. 0d  , /8l , / 4l , 3 /8l  and / 2l  
are shown in the figures. It is seen from these figures 

that the dispersion of 11  and 22E  decreases with 
the increase in N, and that they converge the 
intermediate values between 0d   and / 2d l .  
 

5  Conclusions 

In this study, elastic-viscoplastic properties and 
macroscopic compressibility of ultra-fine plate-fin 
structures with random laminate misalignment 
subjected to uniaxial tension were analyzed using a 

newly proposed method based on the time-
dependent homogenization theory. In the proposed 
method, a unit cell of a plate-fin structure with 
randomly misaligned N fin layers is defined. The Y-
periodic boundary condition is used on the side 
boundary surfaces of the unit cell, whereas the 

boundary condition for periodic laminate 
misalignment is applied on the top and bottom 
boundary surfaces. The unit cell is then divided into 

N substructures to introduce the substructure method 

into the time-dependet homogenization theory.  
The analysis was performed for six cases of N, i.e. 

10N  , 20 , 40 , 60 , 80  and 100 , and macroscopic 
behavior of plate-fin structures was discussed. The 
analysis results showed that elastic-viscoplastic 
behavior of ultra-fine plate-fin structures with 

random laminate misalignment was intermediate 
between no misalignment case ( 0d  ) and half a 
cell misalignment case ( / 2d l ). The results 
suggest that it is of importance to consider the 
laminate misalignment of ultra-fine plate-fin 
structures when analyzing their elastic-viscoplastic 

properties, and that the lower and upper bounds of 
the elastic-viscoplastic properties may be predictable 
from the results for 0d   and / 2d l . 
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(a) 

Fig. 5. Effects of the number of substructures N on 
macroscopic behavior of ultra-fine plate-fin 

structures under uniaxial tension to the 1y -direction; 
(a) 11 , (b) 22E  ( 11 0.004E  ). 

Fig. 4. Macroscopic behavior of ultra-fine plate-fin 
structures for ten cases of random laminate 

misalignment under uniaxial tension to the 1y -
direction ( 100N  ); (a) stress-strain relations, (b) 
compressibility. 
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