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1  Introduction  

Carbon fiber-reinforced plastic laminates (CFRP 

laminates) are now regarded as some of the most 

important engineering materials, because of their 

excellent specific strength and specific stiffness. 

These properties contribute to the weight reduction 

of high-end engineering products such as aircraft, 

spacecraft and automobiles. This leads to a 

significant improvement in energy efficiency, 

resulting in the reduction of environmental load. 

In general, CFRP laminates have extremely 

heterogeneous microscopic structures compared to 

conventional metallic materials. This is because they 

are manufactured by stacking unidirectional 

reinforced laminae called pre-preg sheets comprised 

of a polymer matrix and unidirectionally aligned 

carbon fibers. This can cause complex distribution 

of microscopic stress and, in some cases, high stress 

concentration in laminates. Therefore, such 

microscopic stress distribution in laminates has to be 

taken into account during the mechanical design and 

estimation of CFRP laminates. In particular, it is of 

great importance to examine the stress distribution at 

the free edges of laminates, where high shear stress 

concentration is apt to occur. Such stress 

concentration generally takes place at the 

lamina/lamina interfaces (interlaminar) and the 

fiber/matrix interfaces [1] around the free edges due 

to the mismatch of deformation resulting from the 

difference of their material constants. This is 

sometimes called the "edge-effect", and can bring 

about microscopic failures of the laminates, which 

may result in the macroscopic fracture of the 

laminates themselves. It is therefore necessary to 

investigate the microscopic stress distribution at the 

free edges of CFRP laminates. 

The mathematical homogenization theory for 

periodic materials [2] is one of the most useful 

theories for analyzing mechanical behavior of 

composites such as CFRP laminates, because this 

theory can analyze both the macroscopic behavior of 

the composites and the microscopic stress 

distribution in them at the same time. Thus, in the 

previous studies, the present authors developed the 

homogenization theory applicable to non-linear 

time-dependent problems [3], and analyzed the 

elastic-viscoplastic and creep behaviors of CFRP 

laminates using the developed theory [4,5]. 

Moreover, the present authors [6] also analyzed 

interlaminar stress distribution in cross-ply CFRP 

laminates using the homogenization theory. Through 

these analyses, the authors have found high 

applicability of the homogenization theory to 

various mechanical problems of CFRP laminates. 

These analyses, however, were not able to deal with 

the free edges of laminates, because all of them were 

based on the homogenization theory which was 

applicable only to infinite periodic materials. On the 

other hand, there have been reports on some studies 

which have analyzed the microscopic stress at the 

edges of FRPs using the finite element method 

(FEM) [7,8]. However, these analyses were limited 

to two-dimensional problems of unidirectional FRPs 

subjected to a transverse loading. In this situation, 

the edge effect mentioned before does not occur, 

resulting in an insufficient understanding of the edge 

problems of CFRP laminates. 

In this study, the microscopic stress distribution at a 

free edge of a cross-ply CFRP laminate is analyzed 

three-dimensionally based on the homogenization 

theory. First, by considering a CFRP laminate with 

free edges and defining its unit cell, the 

homogenization theory is reconstructed so that it can 
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be applied to the edge problem of the laminate. Then, 

the unit cell is reduced by half using point-symmetry 

of the internal structure of the laminate. Moreover, 

the substructure method [9] is introduced into the 

present method for reduction of computational costs. 

Using the proposed method, the microscopic stress 

distribution and stress concentration at a edge of a 

cross-ply carbon fiber/epoxy laminate are examined. 

2  Theory 

2.1 Cross-ply CFRP Model 

Consider a cross-ply CFRP laminate subjected to a 

macroscopic uniaxial load in the 
2y -

3y  plane (Fig. 

1). This laminate is reinforced in the 
1y - and 

3y -

directions, and has a finite length in the 
1y -direction, 

i.e. it has the free edges as illustrated in Fig. 1. On 

the other hand, the laminate is assumed to be infinite 

in the 
2y - and 

3y -directions. The carbon fibers in 

each ply are arranged squarely in the plane 

perpendicular to them for simplicity. 

2.2 Homogenization Theory with Free Edges 

For the above-mentioned laminate, a unit cell Y  has 

been defined as indicated in Fig. 1. Describing the 

microscopic distributions of stress and strain in Y  as 

( )ij y  and ( )ij y , respectively, the equilibrium of 

ij  can be expressed as  
 , 0ij j  , (1) 
 
where ,( ) j  denotes the differentiation with respect 

to jy . The fibers and matrix in the laminate are 

assumed to exhibit linear elasticity as characterized 

by 
 
 ij ijkl klc  , (2) 
 
where ijklc  indicates the elastic stiffness of the fibers 

and matrix. The microscopic displacement field 

( )iu y  in Y  has the following expression: 
 
 0 #( ) ( ) ( )i i iu u u y y y , (3) 
 
where 0

iu  and #

iu  denote the macroscopic 

displacement and the perturbed displacement, 

respectively. Then the microscopic strain ij  in Eq. 

(2) is expressed as a sum of the macroscopic strain 

ijE  and the perturbed strain #

ij , i.e.  

 #

ij ij ijE   . (4) 
 
Let #

iu  be an arbitrary variation of the perturbed 

displacement field defined in Y . Then, the 

integration by parts and the divergence theorem 

allow Eq. (1) to be transformed to 
 

 # #

, 0ij i j ij j i
Y

dY n d


      u u , (5) 
 
where   denotes the boundary of Y , and in  

indicates the unit vector outward normal to  . In 

the above equation, the second term of the left-hand 

side, i.e. the boundary integral term, vanishes 

because of the following reasons: First, on the top 

and bottom, and front and rear boundary facets of Y , 

ij  and #

iu  distribute Y -periodically, while in  

takes a opposite direction on a opposite boundary 

facet. Thus, the boundary integral term in Eq. (5) 

becomes zero on these boundary facets. This is the 

same situation as in the usual homogenization theory 

which deals with infinite periodic materials. In 

contrast, on the left and right boundary facets, the 

above situation holds as it is with respect to the 2y - 

and 3y -directions, whereas it does not hold in the 

1y -direction because the Y -periodicity in this 

direction no longer exists. However, regarding the 

1y -direction, ij  is zero because the left and right 

boundary facets are the free edges. The boundary 

integral term on these facets, therefore, also becomes 

zero. Consequently, the second term of the left-hand 

side in Eq. (5) vanishes, resulting in  

 #

, 0ij i j
Y

dY   u . (6) 
 
This resulting equation has the same form as that 

obtained from the conventional homogenization 

theory. Thus, the field of microscopic stress ij  in 

Y  and the relation between macroscopic stress ij  
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Fig. 1. Cross-ply CFRP laminates and unit cell Y. 
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and macroscopic strain ijE  of the laminate are 

derived in the same forms as in the conventional 

homogenization theory: [2]  

 ,( )kl

ij ijpq pk ql p q klc E     , (7) 

 
,( )kl

ij ijpq pk ql p q klc E     , (8) 
 
where ij  indicates Kronecker’s delta, and  

designates the volume average in Y  defined as 
1

# #
Y

Y dY


  , in which Y  signifies the volume 

of Y . Moreover, kl

i  in Eqs. (7) and (8) denotes the 

characteristic function determined by solving the 

following boundary value problem: 
 

 # #

, , ,

kl

ijpq p q i j ijkl i j
Y Y
c dY c dY    u u . (9) 

 
It should be noted that, when solving the above 

problem, the traction-free boundary condition with 

respect to the 
1y -direction on the left and right 

boundary facets, and the Y -periodic boundary 

condition with respect to the others are imposed on 
kl

i . 

2.3 Semiunit Cell 

Consider half of the unit cell Y  as illustrated in Fig. 

2, which hereafter is referred to as a semiunit cell Y . 

A close look at Fig. 2 reveals that the internal 

structure of the laminate has a point-symmetry with 

respect to the center of the left boundary facet of Y , 

C. Consequently, the distribution of kl

i  also 

satisfies the point-symmetry with respect to this 

point. Using the point-symmetry as a boundary 

condition on the left boundary facet, Y  instead of Y  

can be employed as the domain of analysis, leading 

to the following boundary value problem with 

respect to Y : [10]  

 # #

, , ,

kl

ijpq p q i j ijkl i j
Y Y
c dY c dY    u u

 
  . (10) 

 
When solving Eq. (10), the point-symmetric 

boundary condition with respect to C on the left 

boundary facet is imposed on kl

i .  

2.4 Substructure Method 

First, the semiunit cell Y  is divided into cubic 

substructures iA  and iB  ( 1,2,...,i N ) as shown in 

Fig. 3 (in this figure, N is set to be 16 (8 x 4 

substructures) in accordance with the analysis in the 

next section). Then the boundary value problems for 

the individual substructures in a finite element 

discretized form are derived as follows: [6,9]  

 ,  ( 1,2,..., )
i

kl kl

A A A i N Κ χ F , (11) 

 ,  ( 1,2,..., )
i

kl kl

B B B i N Κ χ F , (12) 
 
where 

i

kl

Aχ  and 
i

kl

Bχ  denote the nodal vectors of 

characteristic function in iA  and iB , respectively, 

and AK , kl

AF , BK , and kl

BF  have the following 

expressions:   

 T

i
A i

A
dA K B CB , T

i

kl kl

A i
A

dA F B C , (13) 

 T

i
B i

B
dB K B CB , T

i

kl kl

B i
B

dB F B C , (14) 
 
It is noteworthy that all iA  have common AK  and 

kl

AF  because the geometry and material properties of 

all iA  are the same. For the same reason, all iB  

90°-ply 

Fig. 2. Semiunit cell Y . 
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Fig. 3. Semiunit cell Y  and substructures. 
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have common 
BK  and kl

BF , which are easily 

obtained by rotating 
iA  by 90° with respect to the 

2y -direction. It is therefore enough for us to 

calculate 
AK , kl

AF , 
BK , and kl

BF  only once. 

Next, the components of 
i

kl

Aχ  are divided into two 

parts, ( )

i

kl

A


χ  and ( )

i

kl

A


χ , which represent the 

characteristic functions at the internal and the 

boundary nodes of 
iA , respectively. The 

components of 
i

kl

Bχ are also divided into ( )

i

kl

B


χ  and 

( )

i

kl

B


χ . Then, the boundary value problems for 

iA  

and iB , Eqs. (11) and (12), are rewritten into the 

following equations, respectively:  

 

( )( ) ( ) ( )

( ) ( ) ( )( )

i

i

kl kl
AA A A

klkl

A A AA

  

  

     
    

     

χK K F

K K Fχ
, (15) 

 

( )( ) ( ) ( )

( ) ( ) ( )( )

i

i

kl kl
BB B B

klkl

B B BB

  

  

     
    

     

χK K F

K K Fχ
, (16) 

 
and we obtain 
 

    
1

( ) ( ) ( ) ( ) ( )

i i

kl kl kl

A A A A A

    

 χ K F K χ , (17) 

    
1

( ) ( ) ( ) ( ) ( )

i i

kl kl kl

B B B B B

    

 χ K F K χ . (18) 
 
The elimination of ( )

i

kl

A


χ  and ( )

i

kl

B


χ  from Eqs. (15) 

and (16) using the above equations, respectively, 

yields  

 ( ) ( ) ( )

i

kl kl

A A A

  K χ F , (19) 

 ( ) ( ) ( )

i

kl kl

B B B

  K χ F , (20) 
 
where ( )

A


K , ( )kl

A


F , ( )

B


K , and ( )kl

B


F  are expressed 

as follows:  

 
 

 

1
( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( )

,

,

A A A A A

kl kl kl

A A A A A

    

    





 

 

K K K K K

F F K K F

 (21) 

 
 

 

1
( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( )

,

.

B B B B B

kl kl kl

B B B B B

    

    





 

 

K K K K K

F F K K F

 (22) 

 

Finally, Eqs. (19) and (20) are assembled into one 

equation, which is a boundary value problem with 

respect to just the boundary nodes of all 

substructures, which the joint nodes of adjacent 

substructures belong to. Thus, we have  

 ( ) ( ) ( )kl kl  K χ F , (23) 
 
where ( )

K  stands for the matrix consisting of ( )

A


K  

and ( )

B


K , ( )kl 

F  indicates the vector consisting of 
( )kl

A


F  and ( )kl

B


F , and ( )kl 

χ  denotes the nodal 

vector of the characteristic function at the boundary 

nodes of substructures. The characteristic function 
( )kl 

χ  is determined by solving Eq. (23) with 

appropriate boundary conditions, i.e., the point-

symmetric and the Y -periodic conditions stated in 

the above subsections, and the continuity condition 

at the joint nodes of adjacent substructures. Then, 

the characteristic functions at the internal nodes, 
( )

i

kl

A


χ  and ( )

i

kl

B


χ , are calculated using Eqs. (17) and 

(18). 

In general, the total number of boundary nodes of all 

substructures is much less than the number of all 

nodes in the domain of analysis, resulting in a 

significant reduction of computational memory and 

time.  

3  Analysis 

3.1 Substructures and Finite Element Discretization 

The number of substructures in the semiunit cell Y  

was set at 8 x 4 along the 1y - and 2y -directions 

respectively (Fig. 3). Then, each substructure was 

discretized into eight-node isoparametric elements as 

depicted in Fig. 4 (4320 elements and 5005 nodes). 

The volume fraction of fibers was 56%, as in the 

previous studies [4,5]. 

3.2 Material Properties 

The carbon fibers were regarded as transversely 

isotropic elastic materials, while the epoxy matrix as 

an isotropic elastic material. The material constants 

used in the present analysis are listed in Table 1 

[4,5]. In the table, the subscripts L and T indicate the 

Fig. 4. Substructures (a) Ai and (b) Bi. 

(a) (b) y1 

y2 
y3 

LL TT

TT LT

LT

240[GPa] 0.49

Fiber 15.5[GPa] 0.28

24.7[GPa]

Epoxy 3.5[GPa] 0.35

E

E

G

E







 

 



 

Table 1 Material constants. 
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longitudinal and the transverse directions of fibers, 

respectively. 

3.3 Loading Conditions 

A uniaxial tensile load in the 
3y -direction was 

considered, and the macroscopic strain in the 

loading direction was prescribed to be 
33 0.5%E  . 

The present analysis is performed under the 

macroscopic plane stress condition. 

3.4 Results of Analysis 

Figs. 5(a)-(c) show the distributions of microscopic 

resultant shear stress 2 2 1 2

21 23[ ]in     at the 

interfaces of A1-B1, A7-B7 and A8-B8, which belong to 

the interlaminar plane between the 0°- and 90°-plies. 

On the other hand, Figs. 6(a)-(c) show the 

distributions of microscopic out-of-plane normal 

stress 
22  at the same interfaces. The deformed 

shapes of these substructures also depicted in the 

figures, in which the displacement is magnified 30 

times. First, it is seen from Figs. 5(a) and 6(a) that, 

at the internal area of the laminate, the microscopic 

stress distributions exhibit the same patterns as those 

in the previous study [6]. By contrast, the stress 

distributions in the vicinity of the free edge (Figs. 

5(c) and 6(c)) are markedly different from those of 

internal area. These microscopic stresses are caused 

by the mismatch of the deformation between the 0°-

and 90°-plies in the vicinity of the free edge, and the 

peak values of in  and 22  are 6.97MPa and 

-12.1MPa, respectively. These results show that it is 

important to analyze the microscopic stress 

distribution at interlaminar areas as well as the 

fiber/matrix interfaces at the free edges of CFRP 

laminates. 

4  Conclusions 

In this study, the distributions of microscopic 

interlaminar stress at a free edge of a cross-ply 

CFRP laminate subjected to an in-plane on-axis 

tensile load were analyzed three-dimensionally using 

the newly proposed method based on the 

homogenization theory. In the present method, a 

semiunit cell and the substructure method were 

employed for the reduction of computational costs. 

From the analysis results, it is shown that 

microscopic interlaminar shear stress considerably 

occurs in the vicinity of the free edge, and such 

shear stress may cause microscopic failure of 

laminates. It is therefore important to investigate the 

microscopic stress distribution at interlaminar areas 

as well as the fiber/matrix interfaces in the vicinity 

of free edges. 

In addition, it is known that cross-ply CFRP 

laminates subjected to an off-axis load exhibit 

complex shear stress distribution at interlaminar 

areas, due to the rotation of fibers. Thus, the 

microscopic interlaminar stress analysis under off-

axis loading remains for future investigation. 
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Fig. 5. Distributions of resultant shear stress in at 

the interface of (a)A1-B1, (b) A7-B7 and (c) A8-B8. 

(a) 

(b) 

(c) y1 

y3 

y2 

(a) 

(b) 

(c) 

Fig. 6. Distributions of normal stress 22 at the 

interface of (a)A1-B1, (b) A7-B7 and (c) A8-B8. 
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