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Abstract 
A semi-analytical approach is presented to solve 
general boundary value problems (BVPs) that arise 
in the analysis of composite materials. As an 
illustration, a rectangular shaped medium that 
contains elliptical inclusions will be considered. 
Permissible functions, which satisfy the 
homogeneous boundary conditions and the 
continuity conditions at the matrix-inclusion 
interface, are analytically derived. The 
eigenfunctions are subsequently derived from the 
permissible functions using the Galerkin method. 
The mechanical and physical fields (temperature or 
elastic deformation), with an arbitrarily given source 
term, can be expressed as a linear combination of the 
eigenfunctions. The method is favorably compared 
with numerical results obtained from the finite 
element method.  
1 Introduction 
The conventional micromechanics [1], pioneered by 
Eshelby [2], has been widely used to analyze the 
microstructure of elastic solids that contain 
inclusions. However, the major limitation of 
micromechanics is that the medium is assumed to be 
infinitely extended (no boundary) and the geometry 
of the microstructure is strictly limited, thus making 
it inconvenient to accurately represent actual 
composite materials. Although purely numerical 
methods such as the finite element method can be 
employed for the analysis of composites, analytical 
or semi-analytical solutions, if available, are 
needlessly valuable. This paper presents a new semi-
analytical method for heterogeneous materials that 
makes use of both analytical and numerical 
techniques to obtain mechanical and physical fields 
associated with the given BVP. The method 

primarily involves determining a set of continuous 
permissible functions that satisfy the boundary 
conditions and continuity conditions at the matrix-
inclusion interface, expressing the BVP (governing 
equation) in terms of the Sturm-Liouville (S-L) 
system [3], subjecting the S-L problem (eigenvalue 
problem) to the Galerkin method to obtain an 
orthonormal set of eigenfunctions, and finally, 
representing the mechanical/physical field as a linear 
combination of the evaluated eigenfunctions. In 
order to facilitate the analytical derivation of the 
permissible functions in terms of the relevant 
material and geometrical parameters, a computer 
algebra system [4, 5] has been extensively used. As 
a demonstration example, a steady-state heat 
conduction problem for a rectangular shaped 
medium with elliptical inclusions is presented. The 
results are favorably compared with those obtained 
from the finite element method. 

2 Formulations 
The governing differential equations for both 
elasticity and steady-state heat conduction can be 
expressed as 
 

[(ݔ)ݑ]ܮ + (ݔ)ܾ = 0, (1)  

where ܮ is a self-adjoint differential operator, (ݔ)ݑ	is 
the unknown physical field (temperature or 
displacement) and ܾ(ݔ)  is the source term (heat 
source or body force). For steady state heat 
conduction, ܮ takes the following form: 
 

[(ݔ)ݑ]ܮ = .ߘ ൫݇(ݔ)	∇(ݔ)ݑ൯, (2)  

where ݇(ݔ) is the thermal conductivity and for the 
static elasticity case, ܮ takes the form: 
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௜([(ݔ)ݑ]ܮ) = ൫ܥ௜௝௞௟   ௞,௟൯,௝, (3)ݑ	

where ܥ௜௝௞௟  is the elastic modulus. For isotropic 
materials, it can be expressed in terms of the shear 
modulus, ܩ, and the bulk modulus, ܭ, as: 
 
௜௝௞௟ܥ = ൬ܭ −

ܩ	2
3
൰ ௞௟ߜ௜௝ߜ + ௝௟ߜ௜௞ߜ൫ܩ   ௝௞൯, (4)ߜ௜௟ߜ+

where ߜ௜௝ is the Kronecker delta. 
 
Based on the Sturm-Liouville theory, the solution to 
equation (1) can be obtained if the eigenfunction, 
߶௡(ݔ), is available. The eigenfunction is defined as 
 

[(ݔ)௡߶]ܮ + (ݔ)௡߶௡ߣ = 0, (5)  

where ௡ߣ  and ߶௡(ݔ)  are the ݊௧௛  eigenvalue and 
eigenfunction, respectively. An intrinsic property of 
the Sturm-Liouville system is that its differential 
operator, ܮ, is Hermitian, hence suggesting that all 
the eigenvalues are real and the eigenfunctions are 
mutually orthogonal as 
 

න߶௠(ݔ)
஽

	߶௡(ݔ)݀ݔ = ௠௡ߜ . (6)  

The solution to equation (5) can be obtained by 
expressing the eigenfunctions,߶௡(ݔ), as a series of ܰ 
permissible functions as 
 

߶௡(ݔ) =෍ܿ௡௜	 ௜݂(ݔ)
ே

௜ୀଵ

, (7)  

where ௜݂(ݔ) is a permissible function chosen from 
elementary functions such as polynomials to satisfy 
the homogeneous boundary conditions and the 
continuity conditions across the matrix-inclusion 
interface. The quantity,  ܿ௡௜ , is the coefficient of 
௜݂(ݔ)  of the ݊௧௛ 	 eigenfunction and is determined 

using the Galerkin method. By substituting equation 
(7) into equation (5), multiplying ௝݂(ݔ) on both sides 
and integrating them over the entire domain, 
equation (5) can be converted to the following 
generalized eigenvalue problem: 
 

ܿ	ܣ + ܿ	ܤ	ߣ = 0, (8)  

where 

௜௝ܣ = නܮ[ ௜݂(ݔ)]	
஽

௝݂(ݔ)݀(9) ,ݔ  

௜௝ܤ = න ௜݂(ݔ)	
஽

௝݂(ݔ)݀(10) .ݔ 

The components of ܣ௜௝  and ܤ௜௝  are obtained using 
equations (9) and (10). Therefore, equation (8) can 
be solved using a standard numerical techniques to 
obtain the eigenvalues, ߣ௡, and the corresponding set 
of unknown coefficients, ܿ௡௜. 
 
In accordance with the Sturm-Liouville theory, the 
solution to equation (1) can be expressed as a linear 
combination of eigenfunctions as 
 

(ݔ)ݑ = ෍
ܾ௡
௡ߣ

ஶ

௡ୀଵ

߶௡(ݔ), (11) 

where  ܾ௡ is the eigenfunction expansion coefficient 
of  the source term, ܾ(ݔ), and can be obtained as 
 

ܾ௡ = නܾ(ݔ)	
஽

߶௡(ݔ)݀(12) .ݔ 

The most demanding task is to obtain the 
permissible function, ௜݂(ݔ) , that satisfies the 
boundary conditions and the required continuity 
conditions at the interface. For instance, a 2-D body 
that contains an elliptical inclusion, the permissible 
function needs to be defined separately for each 
phase. For the inclusion phase, ௜݂(ݔ,  is assumed to (ݕ
be in the polynomial form as 
 

௜݂
௜௡௖(ݔ, (ݕ = ෍෍ ௝ܽ௞

௜௡௖ ௞ݕ	௝ି௞ݔ	 ,
௝

௞ୀ଴

ெ

௝ୀ଴

 (13) 

where ܯ represents the order of the polynomial and 
the summation ensures that the permissible function,  
௜݂
௜௡௖(ݔ,  encompasses all the polynomials up to the ,(ݕ
௧௛ order. Similarly, for the matrix phase, ௜݂ܯ

௠௔௧(ݔ,  (ݕ
is assumed to be of the form: 
 

௜݂
௠௔௧(ݔ, (ݕ = ,ݔ)݃ ෍෍(ݕ ௝ܽ௞

௜௡௖ ௝ି௞ݔ	 ௞ݕ	
௝

௞ୀ଴

ெ

௝ୀ଴

, (14) 

where ݃(ݔ, (ݕ  is a function that vanishes at the 
boundary (for the boundary condition of the first 
kind). For example, if the boundary is rectangular 
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shaped with ݔଵ, ,ଶݔ ,ଵݕ  defining the corners of the	ଶݕ
rectangle, then, ݃(ݔ,  :takes the form (ݕ
 
,ݔ)݃ (ݕ = ݔ) − ݔ)(ଵݔ − ݕ)(ଶݔ − ݕ)(ଵݕ −  ଶ), (15)ݕ

The homogeneous boundary condition is 
categorically satisfied by equation (14). 
 
Equations (13) and (14) also need to satisfy the 
continuity conditions at the matrix-inclusion 
interface. This is achieved by satisfying the 
following conditions: 
 

௜݂
௜௡௖|௜௡௧௘௥௙௔௖௘ = ௜݂

௠௔௧ |௜௡௧௘௥௙௔௖௘ , (16) 

௜௡௖ܥ
߲ ௜݂

௜௡௖

߲݊
|௜௡௧௘௥௙௔௖௘ = ௠௔௧ܥ

߲ ௜݂
௠௔௧

߲݊
|௜௡௧௘௥௙௔௖௘ , (17) 

where ܥ௜௡௖  and ܥ௠௔௧  are material constants 
associated with the inclusion and matrix, 
respectively. For steady state heat conduction, the 
material constant would be thermal conductivity, 
(ݔ)݇ , and for the elastic equilibrium equation, it 
would be the shear modulus, ܩ , and the bulk 
modulus, ܭ. The term, డ

డ௡
, represents the directional 

derivative on the matrix-inclusion interface. The 
surface normal, ࢔	 , for an elliptical boundary is 
defined as 
 

࢔ =

⎝

⎜
⎛

ݔ ܽଶ⁄
ඥݔଶ ܽସ⁄ + ଶݕ ܾସ⁄

ݕ ܾଶ⁄
ඥݔଶ ܽସ⁄ + ଶݕ ܾସ⁄ ⎠

⎟
⎞
, (18) 

where ܽ  and ܾ  are the semi-major and semi-minor 
axis of the ellipse respectively. 
 
In the case of steady state heat conduction, equations 
(16) and (17) represent the continuity of temperature 
and heat flux respectively. The same equations, in 
the case of elastic equilibrium, represent the 
continuity of displacement and traction force across 
the matrix-inclusion interface. 

3 Examples 
The Poisson type equation is considered that governs 
the steady state heat conduction in a square shaped 
matrix medium consisting of two elliptical 
inclusions with the inclusions and matrix having 

different thermal conductivities, ݇ଵ and ݇ଶ, as shown 
in Fig. 1. The governing equation is expressed as 
 

∇. ൫݇(ݔ, ,ݔ)ܶ∇	(ݕ ൯(ݕ = ܿ, (19) 

where ܶ(ݔ,  ܿ is the unknown temperature field and (ݕ
represents the heat source. The boundaries of the 
square shaped region are subjected to the boundary 
condition of the first kind ( ,ݔ)ܶ (ݕ = 0 ). The 
associated continuity conditions are 
 

ଵܶ(ݔ, ୧୬୲ୣ୰୤ୟୡୣ|(ݕ = ଶܶ(ݔ,  ௜௡௧௘௥௙௔௖௘, (20)|(ݕ

݇ଵ
߲ ଵܶ(ݔ, (ݕ

߲݊ |௜௡௧௘௥௙௔௖௘ = ݇ଶ
߲ ଶܶ(ݔ, (ݕ

߲݊ |௜௡௧௘௥௙௔௖௘ ,		 (21) 

where the indices, 1 and 2, represent the inclusion 
phase and matrix phase, respectively. 
 

 
Figure 1. Elliptical Inclusions. 

 
A set of continuous permissible functions are 
analytically derived that satisfy the homogeneous 
boundary condition and the continuity conditions 
indicated above. Despite the simplicity of the BVP, 
the procedure involved in obtaining the permissible 
functions is a cumbersome one. This is facilitated 
with the aid of a computer algebra system, 
Mathematica [6]. For illustration purposes, one of 
the computer generated permissible functions is 
shown below: 
 
,ݔ)݂ (ݕ = −௔మ௕ల௞మ

ଷ௞భ
+ ௔మ௕రௗమ௞మ

௞భ
+ ௕లௗమ௞మ

௞భ
−

ଶ௕రௗర௞మ
௞భ

− ଶ௕లௗమ௫మ௞మ
௔మ௞భ

+ ଶ௕రௗర௫మ௞మ
௔మ௞భ

+
௕ల௫ర௞మ
௔మ௞భ

− ௕రௗమ௫ర௞మ
௔మ௞భ

+ ௕లௗమ௫ర௞మ
௔ర௞భ

− ଶ௕ల௫ల௞మ
ଷ௔ర௞భ

−
ଶ௔మ௕మௗమ௬మ௞మ

௞భ
+ ଶ௕మௗర௬మ௞మ

௞భ
+ ௔మ௕మ௬ర௞మ

௞భ
+

௔మௗమ௬ర௞మ
௞భ

− ௕మௗమ௬ర௞మ
௞భ

− ଶ௔మ௬ల௞మ
ଷ௞భ

,  
 

(22)  



 

 

where ݀  is half the length of the square shaped 
matrix, ܽ and ܾ represent the semi-major and semi-
minor axes of the elliptical inclusion, ݇ଵ  and ݇ଶ  are 
the thermal conductivities of the inclusion and 
matrix, respectively. From the above equation, it can 
be observed that ݂(ݔ, (ݕ  is a function of both the 
geometrical and material parameters. 
 
From the permissible functions, the matrix elements 
of equations (9) and (10) are computed, following 
which an orthonormal set of eigenfunctions are 
obtained using equation (7). Figures 2, 3, and 4 
show three arbitrary eigenfunctions for aspect ratios 
of 1 (circular inclusion), 2, and 5, respectively. A 
noticeable feature in all of the representations below 
is the shape of the inclusions being clearly reflected 
in each of the eigenfunctions. A closer examination 
also reveals that the eigenfunctions in each of the 
aspect ratios are mutually orthogonal (independent) 
to each other as indicated by equation (6). 
 

 
 

Figure 2. Eigenfunctions for an aspect ratio = 1. 
 

 
 

Figure 3. Eigenfunctions for an aspect ratio = 2. 
 

 
 

Figure 4. Eigenfunctions for an aspect ratio = 5. 
 
The unknown physical field (temperature), can now 
be obtained in terms of the eigenfunctions by 
expressing them as a linear combination as described 
in equation (11).  
 

 
Figure 5. Cross-sectional profile of  ܶ(ݔ,  .(ݕ

 
Figure 5 depicts the cross sectional views of 
temperature (ܶ(ݔ, ݔ at ((ݕ = 0 for each of the aspect 
ratios, 1, 2, and 5. The profile in red represents the 
temperature distribution for an aspect ratio = 1 (two 
circular inclusions). The profiles in blue and green 
represent the temperature distribution for two 
elliptical inclusions with aspect ratios of 2 and 5, 
respectively. For aspect ratios greater than 5, it was 
seen that there is but negligible difference in the 
temperature profile. The results depicted in Figure 5 
are in good agreement with those obtained from the 
finite element method for the same geometrical 
configuration and material properties. 
 
As a precursor to the boundary value problems 
associated with the elastic equilibrium equation, the 
permissible functions were analytically derived. 
Shown below is a computer generated sample output 
of one such function: 
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,ݔ)݂ (ݕ = −
ܽଶܾ଺݇ଶ
3݇ଵ

+
ܽଶܾସ݀ଶ݇ଶ

݇ଵ

+
ܾ଺݀ଶ݇ଶ
݇ଵ

−
2ܾସ݀ସ݇ଶ

݇ଵ

−
2ܾ଺݀ଶݔଶ݇ଶ

ܽଶ݇ଵ

+
2ܾସ݀ସݔଶ݇ଶ

ܽଶ݇ଵ
+
ܾ଺ݔସ݇ଶ
ܽଶ݇ଵ

−
ܾସ݀ଶݔସ݇ଶ
ܽଶ݇ଵ

+
ܾ଺݀ଶݔସ݇ଶ
ܽସ݇ଵ

−
2ܾ଺ݔ଺݇ଶ
3ܽସ݇ଵ

−
2ܽଶܾଶ݀ଶݕଶ݇ଶ

݇ଵ

+
2ܾଶ݀ସݕଶ݇ଶ

݇ଵ

+
ܽଶܾଶݕସ݇ଶ

݇ଵ
+
ܽଶ݀ଶݕସ݇ଶ

݇ଵ

−
ܾଶ݀ଶݕସ݇ଶ

݇ଵ
−
2ܽଶݕ଺݇ଶ
3݇ଵ

, 

(23)  

where  ܩ and ܭ represent the shear and bulk moduli, 
respectively, and the indices, 1 and 2, represent the 
inclusion phase and matrix phase, respectively. 
 

4 Conclusions 

An analytical procedure was introduced to 
systematically derive the permissible functions that 
satisfy the boundary condition and continuity 
conditions for a body having elliptical shaped 
inclusions that arise in heat conduction and elasticity. 
A computer algebra system was extensively used to 
carry out tedious algebra. Temperature fields were 
fields were obtained by the Galerkin method with 
the derived permissible functions. This approach 
gives a unified methodology to solve general 
boundary value problems. 
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