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1 Introduction  

Various analytical models have been proposed, with 

different degrees of complexity, e.g. [1-7]. The 

meso-scale models from Tan et al. [6] and Naik et 

al. [7], proposed for plain weave composites, are 

worth highlighting, as they share a similar approach 

to the one proposed herein. Both models are based 

on a beam on elastic foundation formulation. The 

load-aligned tow is considered to be an UD 

composite, and modelled as an Euler-Bernoulli 

beam. Tan et al. [6] focuses on predicting tensile 

failure. The authors assume the load-aligned tow has 

a sinusoidal shape. The elastic foundation is 

introduced to model the supporting effect of the 

matrix; the support provided by the transverse tows, 

as well the effect of the presence of adjacent layers 

(on the through-thickness direction), are neglected. 

Results show the proposed model over-predicts the 

tensile strength. 

Naik et al. [7] presents a refined formulation and 

applies it to predict the compressive failure strength. 

The authors discretise the beam in several elements 

and calculate the elastic foundation stiffness and the 

load distribution for each element. The contributions 

of matrix and transverse tows to the elastic 

foundation are both accounted for. Additionally, 

they also account for the support provided by the 

adjacent layers by considering two different cases of 

shifting between adjacent plies. Results show the 

model over-predicts compressive failure strength. 

Both approaches [6,7] calculate the elastic 

foundation stiffness in a semi-empirical fashion, 

considering that the elastic foundation provides 

normal support only, and neglecting the weave 

effect, i.e. the effect of the deflection of the adjacent 

in-plane tows.  

Recent experimental evidence has highlighted the 

behaviour of tows as structural elements at the 

reinforcement level [8]. It was observed that the 

support provided by the adjacent layers affects the 

damage mechanisms and that damage morphology, 

at both lamina and laminate level, is affected by the 

weave architecture and geometry [8]. Therefore, in 

order to capture the physics of the failure of this type 

of materials, it is necessary to: (i) model the beam-

like behaviour of the load-aligned tows, (ii) account 

for the relative shift between adjacent layers in the 

support provided to each layer, (iii) explicitly model 

the weave architecture and/or its effect. 

Following the work from Tan et al. [6] and Naik et 

al. [7], the proposed approach is based on a beam on 

elastic foundation formulation. Two practical 

bounds for the support provided by the adjacent 

layers are considered: In-Phase (IP) and Out-of-

Phase (OP). The elastic foundation is considered to 

provide not only normal support, but also torsional 

support to the load-aligned tow. The constants of the 

elastic foundation are physically derived, and 

depend upon: (i) through-thickness support provided 

by the adjacent layers being considered (IP or OP), 

(ii) weave effect, and (iii) properties of both matrix 

and transverse tow. To assist the validation of the 

analytical model, an equivalent numerical model 

was developed. Numerical and analytical results for 

the local stresses along the load-aligned tow are 

compared. Finally, the constitutive response and 

final failure predicted analytically is compared to 

experimental results obtained for uniaxial tension 

and compression of a 2×2 twill carbon-epoxy 

composite and conclusions are drawn. 

 

2 Analytical Model 

The analytical model consists of an Euler-Bernoulli 

beam under axial tension/compression on an elastic 

foundation. The beam represents the load-aligned 

tow and is regarded as an UD composite. The elastic 

foundation provides normal and torsional support. 
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As referred previously, the properties of the elastic 

foundation are physically derived, and are a function 

of: weave pattern, support provided by the adjacent 

layers and properties of matrix/transverse tows. The 

present section provides a brief summary of the 

main features of the model presented. Further details 

can be found in [9]. 

2.1 Geometry 

Exploiting existing symmetries, it is possible to 

define a 2D representative model of a 2×2 twill 

weave consisting of half a sinusoidal beam 

connected with a straight beam, regions A and B of 

Figure 1. 

 

Figure 1. Geometry of the analytical model for a 2×2 

twill weave. 

2.2 Weave pattern 

The weave pattern affects the response of the woven 

composite under loading. In-plane adjacent tows 

affect the deflection of each other through the 

shearing of the matrix connecting them, Figure 2. 

The shear strain of the matrix connecting two 

adjacent tows can be estimated by relating the 

deflection of each tow. Knowing the shear strain, the 

pressure exerted by the adjacent tows can be 

approximated by: 

       
                       

 
, (1) 

where    is a geometrical parameter, defined in 

Figure 1,            represents the average tow thickness 

(the cross section of the tows is assumed to be 

elliptical),    is the shear modulus of the matrix,   

is the gap between adjacent tows, and      the 

vertical displacement of a load aligned tow. 

 

Figure 2. Shearing of the matrix connecting two 

adjacent tows (in-plane). 

2.3 Through-thickness support 

2.3.1 In-Phase (IP) 

In the IP case, the support provided to the tow by the 

adjacent layers is essentially given by: (i) the 

shearing of the material between load-aligned tows 

of adjacent layers, and (ii) the pressure that 

originates from the gradient of that shearing stress.  

Upon loading, the rotation of tows in an IP laminate 

causes the region between adjacent tows to shear, 

Figure 3. Analysing the kinematic model of Figure 

3, it is possible to derive an expression for the shear 

stress applied to the tow: 

         
          

                 
  

  
, 

(2) 

where    is the homogenized modulus of the region 

between load-aligned tows of adjacent layers and 

               is the average vertical length of that region. 

Analysing the vertical equilibrium of the region 

between tows, Figure 4, it comes that the gradient 

of the shear stress induces a normal pressure applied 

to the tow given by: 
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where      is the width of the cross-section of the 

tow. 
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Figure 3. Kinematic model illustrating the shearing 

of the material between load-aligned tows of 

adjacent layers upon loading in an IP laminate. 

 

Figure 4. Equilibrium of an element of the region 

between load-aligned tows of adjacent layers. 

2.3.1 Out-of-Phase (OP) 

In the OP case, the support is essentially provided 

by: (i) a direct pressure applied by the load-aligned 

tows of adjacent layers, resulting from their 

displacement in opposite directions, and (ii) the 

shearing of the material between the load-aligned 

tows of adjacent layers. Both effects can be derived 

form the kinematic model of Figure 5. Similarly to 

the IP case, upon loading the regions between the 

tows will shear. The analysis of the kinematic model 

results in the following expression for the shear 

stress applied to the tow: 

      
  

  
 (4) 

Figure 5 shows that adjacent tows displace 

identically but in opposite directions. The latter 

leads to a direct pressure being applied that can be 

estimated by: 
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(5) 

where            and            are the 

homogenised stiffness and Poisson’s ratio of the 

regions between a given tow and the top and bottom 

adjacent tows. The variables                     are the 

vertical distances between a given tow and the top 

and bottom adjacent tows, Figure 5. 

 

Figure 5. Kinematic model illustrating the local 

shearing of the material between load-aligned tows 

upon loading and the displacement of adjacent tows 

in opposite directions in an OP laminate. 

2.4 Beam Equilibrium and Differential Equation 

Having identified all relevant features, the 

differential equation is derived from the equilibrium 

of an infinitesimal element of the beam, Figure 6. 

The loads applied are: axial load   (tension or 

compression), a pressure per unit length      and a 

shear stress     . As highlighted previously, the 

different cases of through-thickness support, IP and 

OP, lead to different expressions for the shear and 

pressure applied to the tow. Using Eqs (1) to (5) and 

after some manipulation, it is possible to arrive to 

the following differential equation: 
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where the constants,   ,    and    are a function of 

the case of support being considered, IP or OP; 

further details are provided in [9]. 
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Figure 6. Equilibrium of an infinitesimal beam 

element. 

2.5 Failure prediction 

Compressive and tensile failure are predicted using 

two different failure criteria: maximum stress and 

physically-based criteria [10]. Both set of criteria are 

applied at the tow level. The material is assumed to 

fail after failure of the tows is detected using one of 

the referred criteria. The maximum stress criteria 

compare directly the measured strengths of a given 

material with the applied stresses. The physically-

based criteria consider different failure modes 

separately and the equations used to predict each 

failure mode are derived from the physics of the 

failure process. Longitudinal compressive failure of 

the tows is predicted using a kinking criterion [10]: 

        
   
 

       
  

 

  
   
 

       
  

 

  
   

   
  

    

(7) 

To predict tensile failure a maximum stress criterion 

is used, as it is shown to correlate well with existing 

experimental data. 

 

3 Finite Element Model - reduced Unit Cell 

3.1 Geometry, mesh & properties 

The numerical model developed consists of a 

reduced Unit Cell (rUC) of a 2×2 twill weave, 

Figure 7. It corresponds to the nominal geometry of 

the carbon-epoxy composite characterized in [8]. 

The model was developed and solved in 

Abaqus/Standard. The section of the tows is 

assumed to have an elliptical shape, and the path of 

the tows is defined using a spline interpolation. In 

order to capture accurately the bending response of 

the tows, six elements were used in the through-

thickness direction. They are assumed to consist of 

an orthotropic material, with the material 

orientations following the central path of the tow. 

The matrix was modelled as an isotropic material. 

Material properties for tows and matrix were 

obtained from [11] and [12], respectively.  

3.2 Boundary conditions and loading 

Periodic Boundary Conditions (PBC) were applied 

to the rUC using the formulation developed in [13]. 

Symmetries within the UC are exploited enabling 

the reduction of the analysis domain to 1/16
th
 of the 

UC, whilst guaranteeing the same response is 

obtained. Details on how to apply PBCs to this 

particular rUC are provided in [13]. In the through-

thickness direction, PBCs are applied to represent 

two types of laminates: In-Phase (IP) and Out-of-

Phase (OP). Two cases of loading are considered: 

uniaxial tension and compression. The model was 

solved using large displacements formulation. 

 

Figure 7. Finite element model of the 2×2 twill rUC 

used. 

4 Results 

4.1 Mesoscale stress comparison 

Numerical and analytical results show, in general, 

good agreement. The analytical model developed 

captures well the difference in response between IP 

and OP cases, Figure 8a and Figure 8b. The range 

of stresses for all cases is well predicted as well as 

their local trends. Nevertheless, the numerical and 

experimental results for the IP case show a better 

agreement than for the OP. This is due to the 

significant decrease in the bending of the tows, and 

proportional increase in the effect of the local 

deformations of the material between tows of 

adjacent layers. 

Matrix Tows 
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(a) IP 

 
(b) OP 

Figure 8. σ1 determined along the tow and at the 

centre of the top and bottom surfaces. In both cases 

the tow is under a compressive strain of ε1 = −0.008. 

4.2 Constitutive response and failure prediction 

In the tensile case, Figure 9a, the constitutive 

response is well captured apart from the slight 

stiffening verified experimentally. The latter is 

possibly due to the stiffening of the fibres [14] not 
represented in the model. Using a maximum stress 

criterion, the range of both failure strain and stress is 

slightly over-predicted. As expected, the failure 

stress predicted in the IP case is lower than that for 

the OP case, due to a decrease in the bending of the 

load-aligned tow. Averaging the stress predictions 

for the IP and OP cases, the failure stress is over-

predicted by ~5%, Figure 10a. In the compression 

case, Figure 9b, the variability of the constitutive 

response is higher than for the tensile case. The 

analytical model captures well the stiffer constitutive 

responses, apart from the nonlinear region near 

failure. The latter leads to a slight under-prediction 

of the failure strains. As referred previously, two 

different sets of criteria were used to predict 

compressive failure: maximum stress and 

physically-based. Both have a similar failure 

prediction for the IP case. In the OP case, the 

physically-based failure criteria predict failure for 

higher stresses than the maximum stress criteria. 

Therefore, the physically-based failure criteria 

predict a wider range of failure stress and strains. 

Averaging the predictions for the two cases, IP and 

OP, the physically-based failure criteria and the 

maximum stress criteria under-predict the 

compressive strength by ~6% and 17%, respectively, 

Figure 10b. Finally, both in tension and 

compression, the effect of considering two different 

cases of support, IP and OP, is relatively more 

significant in the prediction of the failure stress than 

in the prediction of the constitutive response. 

 

 

(a) Tension 

 

(b) Compression 

Figure 9 Comparison between the constitutive 

responses predicted and obtained experimentally. 

Failure is determined using both maximum stress 

and physically-based failure criteria 

 

5 Conclusions 

An analytical model, based on a beam on elastic 

foundation, has been developed. The elastic 

foundation provides both normal and torsional 

-1800 

-1600 

-1400 

-1200 

-1000 

-800 

-600 

-400 

-200 

0 

0 0.2 0.4 0.6 0.8 1 

Analytical (T) 

Analytical (B) 

σ1 
[MPa] 

x /L 

Analytical Numerical 

Analytical Numerical 
Top 

Bottom 

-1800 

-1600 

-1400 

-1200 

-1000 

-800 

-600 

-400 

-200 

0 

0 0.2 0.4 0.6 0.8 1 

Analytical (T) 

Series5 

x /L 

σ1 
[MPa] 

Numerical 
Analytical 

Top 

Bottom 

ε1 
-50 

50 

150 

250 

350 

450 

550 

650 

0 0.002 0.004 0.006 0.008 0.01 0.012 

Experiments 

IP 

OP 

σ1 

[MPa] 

ε1 

-700 

-600 

-500 

-400 

-300 

-200 

-100 

0 

-0.016 -0.011 -0.006 -0.001 

Experiments 

OP 

IP 

Physically-based 

σ1 

[MPa] 

Max stress 



support. Its properties are physically derived and 

account for: i) weave effect, ii) support provided by 

the adjacent layers and iii) the properties of matrix 

and transverse tows. The local stress predictions 

obtained analytically compare well with the 

predictions made by an equivalent numerical model, 

both in terms of maximum/minimum stresses and 

local trends. This agreement guarantees the essential 

physics of the deformation process are well 

captured. The constitutive response predicted also 

shows good agreement with experiments. The 

discrepancies found are related with the nonlinear 

material response of the composite constituents near 

failure. The latter can be incorporated in the 

analytical model, albeit compromising its simplicity. 

The proposed model accurately predicts the tensile 

and compressive failure strengths, particularly when 

physically-based failure criteria are used. 

Additionally, it also enables the analytical 

determination of range values for the failure 

strengths, which are seen to agree well with the 

experimental data available. 

 
(a) Tension 

 
(b) Compression 

Figure 10. Comparison between experimental and 

predicted failure strengths using maximum stress 

and physically-based failure criteria 
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