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1 Introduction

In recent years, global warming together with oil
crisis have become more and more serious problems.
Among all the categories, transportation has an
increasing emission of CO, and also demand on
energy (Fig.1) [1], and the main reason of them is
automobile (Fig.2). For the special energy
consumption composition, transportation strongly
depends on fossil resources of existence (Figs.1 and
3). Consequently, weight-lightening of automobile
and application of electric vehicle (EV) can be
considered as essential and effectual ways to achieve
reduction of both CO, emission and energy
consumption in transportation sector.

CFRPs are well known for their high specific
properties (Figs.4, 5 and 6), together with some
other outstanding mechanical, physical and chemical
properties, leading to a promising application on the
weight-lightening of automobile. Still there remain
problems as high energy consumption during
processing, materials relying to fossil resources,
recyclability and so on from point of view of energy.
This research thus applied life cycle assessment
(LCA) as a tool to evaluate potential and improving
direction of CFRP in application of automobile.

2 Inventory data of carbon fiber and LCA of
automobile and airplane

To perform LCA of products using CFRP, inventory
data of carbon fiber is necessary. Inventory data of
standard grade PAN based carbon fiber has been
reviewed every five years, as shown in Table 1,
based on actual production data of Toray, Toho
Tenax, and Mitsubishi Rayon [2]. JCMA (Japan
carbon fiber manufacturers association) also
performed LCA of automobile and airplane using
CFRP as shown in Figs. 7, 8 and 9.

Then we have to pay attention to the influence of
payload in the cases of truck and airplane (Fig.10),
but fuel reduction effect generally becomes larger
when vehicle is larger as shown in Figs.9 and 11.

3 Direction of improvement in energy
consumption of CFRP production

In the life cycle energy consumption of gasoline
vehicles shown in Fig.11, energy consumption of
running stage takes main part comparing to that of
production stage even in the case of weight-
lightened one (Fig.9). On the other hand, in the case
of EV, energy consumption and CO, emission of
running stage become drastically smaller as shown
in Figs.12 and 13, and they are almost the same or
less of those of production stage. Then in the next
step we should consider energy saving and CO,
emission reduction in the material production stage.
In the production of CFRP, fossil resources
consumption of CF is apparently higher than that of
resin matrixes (Figs.14, 15 and 16); especially the
processing phase plays a main role in energy
consumption. And another important aspect in CFRP
manufacturing is low yield rate (Fig.17) which is not
good as a garbage problem (Table 2) as well as cost
issue. Consequently, developing new processes for
obtaining CF with less energy, and recycling CF
during disposal phase (Fig.18) can be considered as
the most effective ways to bring down energy
consumption of CFRP production.
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Table 1 Inventory data of standard grade PAN

based carbon fiber [2].
Energy CoO, SO, NO,

(MJ/kg- (ka/kg- (kgrkg- (ka/kg-

CF) CF) CF) CF)
First
data at 1999 478.5 29.7 0.068 2.009
Recalculated
data at 2004 285.9 205 0.02 0.146
Recalculated
data at 2009 286 224 0.019 0.121
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