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1  Introduction. Cavity Compliance Tensor 

We present a homogenization procedure to predict 
the effective elastic properties of materials 
containing randomly distributed non-ellipsoidal 
pores. Such materials can be either isotropic or 
anisotropic depending on the elastic symmetry of 
matrix material and orientational distribution of 
defects. The approach is based on the evaluation of 
compliance contribution tensor of each pore type [1]. 
For some pore types this can be done analytically 
utilizing existing elasticity solution [2, 3]. The 
examples of such geometries are 3D ellipsoids, 2D 
ellipses and equilateral polygons. However, there are 
no convenient analytical solutions for irregular pore 
shapes, so that numerical techniques, e.g. finite 
element method (FEA), have to be used. The FEA 
procedure to determine the cavity compliance 
contribution tensor of an arbitrarily shaped cavity in 
some isotropic or anisotropic matrix is presented in 
section 2. 
The fourth rank compliance contribution tensor H of 
an individual cavity is defined as a set of 
proportionality coefficients between remotely 
applied homogeneous stress field ( )0σ  and the 
additional strain  ∆ε  generated in the material due to 
the presence the cavity: 

( )0: .∆ =ε H σ  (1) 

The choice of micromechanical model used to 
predict the effective elastic properties of material 
with many pores depends on their concentration. If 
pores are sufficiently away from each other (dilute 
limit), the non-interaction approximation can be 
used. We choose the proper representative volume 
element (RVE) [4, 5], and calculate the overall 

compliance contribution tensor for the RVE by 
direct summation: 

( ) ,iNI
RVE =∑H H  (2) 

where ( )iH  is the compliance contribution tensor of 
an individual pore, and the summation is performed 
over all defects present in the RVE. Denoting by 

( )0S  the compliance of the of matrix material, we 
obtain the following expession for the effective 
compliance tensor  

( )0 ,NI
RVE= +S S H  (3) 

from which all effective elastic parameters of the 
porous material can be extracted. 
For non-dilute distribution of pores, some more 
advanced micromechanical scheme can be used. For 
example, predictions for the overall elastic 
compliance by the Mori-Tanaka method [6] in terms 
of NI

RVEH  is given by a simple formula 

( )/ 1 ,MT NI
RVE RVE p= −H H  (4) 

where p  is the volume fraction of pores [1]. 

 

2  Evaluation of Contribution of a Single Pore by 
Finite Element Analysis 

The pore compliance contribution tensor of a non-
ellipsoidal pore can be calculated numerically using 
FEA. The following procedure utilizing 
MSC.MARC (www.mscsoftware.com) software 
package was implemented by the authors (for details 
see [7]): 
(a) The pore surface is placed into the reference 
volume in the shape of a cube with sides five times 
larger than the largest dimension of the pore (Fig. 1).  
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This setup is auto meshed with tetrahedral 3D 
elements;  
 

 
 

Fig.1. Reference volume and pore surface mesh 
 
(b) To obtain all 21 independent components of H-
tensor, six loadcases (3 uniaxial tensions and 3 shear 
deformations in perpendicular directions) are 
considered; 
(c) The FEA simulations are performed and the 
stress and strain fields are calculated; 
(d) The components of the pore H-tensor are 
calculated based on the average values of strain. For 
example, from the uniaxial tension in 1x  direction 

( )0
11σ  we obtain: 

( ) ( )

( )

0 0
11 11

11 0
11

.
ij ij RVE
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−
=  (5) 

 

3 Results for Pores in Carbon/Carbon 
Composites 

The above procedure was utilized to evaluate 
contribution of irregularly shaped 3D pores to the 
overall properties of carbon/carbon composites. The 
shapes of the pores were determined by X-ray 
computed microtomography [8]. As an example, 
Table 1 provides contributions of several pore 
shapes to the effective Young’s moduli in the 
directions of coordinate axes. The parameters iE  
presented in the table enter the expressions for the 
Young’s moduli as 

( ) ( )0 / 1 ,i iE E p E= + 

 (6) 

where p  is the volume fraction of  parallel pores of 
the corresponding shape. 

 
Table1. Contributions of selected pores to the 

effective Young’s moduli 
Cavity shapes 1

~E  2
~E  3

~E  

 
 

1.753 2.359 2.591 

 

 
 

1.711 2.674 2.176 

 

 
 

1.831 2.348 2.499 

 

4 Approximation of Irregularly Shaped Pores by 
Ellipsoids 

Traditionally in micromechanical analysis three-
dimensional inhomogeneities are assumed to be 
ellipsoidal. This is done because only such shapes 
possess the property of uniform eigenstrain under 
remotely applied loading, so that the analytical 
solutions for strains and stresses around them can be 
utilized [2, 9]. 
For irregular defect shapes, one possible approach is 
to find the bounds of individual pore contributions 
by considering the inscribed and circumscribed 
ellipsoids constructed for such a pore [4, 10]. 
However, for the shapes considered in Table 1 of the 
previous section, such an approach would result in 
extremely wide bounds due to large differences 
between the dimensions of the inscribed and 
circumscribed ellipsoids. 
When pores are approximated by ellipsoids, two 
major issues have to be addressed: the choice of the 
best approximation of real pore shape by an ellipsoid 
(orientations and lengths of principal axes) and 
accuracy of the chosen approximation. In this 
section of the paper, we propose a principal 
component analysis (PCA) approach [11] utilizing 
the experimentally obtained 3D μCT data to 
construct the approximating ellipsoids, and evaluate 
the accuracy of the approach in terms of effective 
property predictions. 
In the presentation of PCA approach, the notation 

zyx ,,  for the point coordinates will be used. 
Processing the μCT data, the pores in the image 
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were labeled and the surface of the pores was 
extracted to obtain input points ( ), ,i i ix y z  for the 
estimation of geometrical properties using PCA. 
Additionally, the volume and center of mass of each 
pore were determined for further use in the fitting 
process. A statistical method for describing 
variations or similarities in data is given by the 
variance or covariance of a data set [11]. In our case, 
the data set is comprised of all the surface points of 
the pore, which are a reduced representation of the 
complete body of the pore structure. It is possible to 
simplify the description of a pore in the composite to 
be represented by only a few characteristic 
parameters by applying the PCA methods to the data 
set. Therefore, it is necessary to compute the 
variance in 3D points and assemble the covariance 
matrix of the pore with all the necessary information 
to describe a simplified representation of the pore 
geometry. The covariance of two sets of variables, 
for example ( ),X Y , is defined as: 

( ) 1
( )( )

cov , .
1

n
i ii

x x y y
X Y

n
=

− −
=

−
∑  (7) 

For the direct estimation of the geometrical 
parameters of the pore in a local coordinate system, 
it is advantageous to subtract the center of mass 
( ), ,X Y Z from each point in the point set before the 
covariance matrix is constructed. This sets the origin 
of the coordinate system to the center of mass and 
relates all geometrical parameters to the local 
coordinate system.   
Using the definition of the covariance of the three 
dimension in space for the point set the covariance 
matrix is: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

cov , cov , cov ,
cov , cov , cov , .
cov , cov , cov ,

X X X Y X Z
Y X Y Y Y Z
Z X Z Y Z Z

 
 =  
  

C  
(8) 

This matrix is symmetric and, using the spectral 
theorem of linear algebra, we apply the eigenvector 
decomposition to rewrite the covariance matrix in 
the form: 

.= TC QΛQ  (9) 

Matrix 1 2 3( , , )diag λ λ λ=Λ  is the diagonal matrix of 
eigenvalues 

1

2

3

0 0
0 0 ,
0 0

λ
λ

λ

 
 =  
  

Λ  (10) 

where 1λ , 2λ  and 3λ  are the semi-axes of the 
approximating ellipsoid and Q  is the matrix of 
eigenvectors composed of the direction cosines of 
the ellipsoid’s principal axes organized in columns. 
Thus, all parameters of the approximating ellipsoid 
are defined. The resulting surface has the same 
variance as the original set of surface data points. 
 

5 Examples of Ellipsoidal Approximations of 
Pores in Carbon/Carbon Composite 

 
Fig. 2. Pore and approximating ellipsoid 

 
Let us consider the pore shown in Fig. 2. 
Application of the procedure presented in section 4 
results in the approximating ellipsoid with axes 

0.347a d= , 0.557b d= , 0.972c d= , where d  is 
the length of the pore in x  direction. The Euler 
angles defining orientation of the ellipsoid ( ' ''ZY Z  
convention) are -4.7˚, 76.7˚ and -109.7˚, 
correspondingly. 
Comparing the components of normalized H -tensor 

( )( )0 /E p= ⋅H H  with the values for the original 

pore, we observe that diagonal terms are within 40% 
difference (1.865, 1.519 and 3.013 for the ellipsoid 
vs 1.4912, 2.765 and 2.117 for the original pore). No 
conclusive observation, however, for the off-
diagonal terms can be made. Introducing the 
Euclidean norm of the 4th rank tensor ijkl ijklS S=S  
(summation over the repeating indices), the relative 



distance between the compliance contribution tensor 
of the actual pore and its approximation is  

( )( )
( )

0.33
exact appr exact appr
ijkl ijkl ijkl ijkl

exact exact
pqrs pqrs

S S S S

S S

− −
∆ = = . (11) 

Note that this parameter is called error in [12], 
where authors utilized it to analyze elastic 
symmetries. 
To provide a more mechanically meaningful 
comparison, Table 2 presents compressibility and 
shear compliance values for approximating 
ellipsoids compared to the corresponding parameters 
of the original shapes of the selected pores. These 
parameters are present in the expressions for 
effective bulk and shear moduli of materials with 
randomly oriented pores of a certain type: 

( ) ( )0 / 1K K pK= +  , ( ) ( )0 / 1G G pG= +  . (12) 

 
Table 2. Parameters K and G  for pores compared 

to their approximating ellipsoids 

Pore PK  ELLK  PG~  ELLG~  

 
5.117 4.970 1.932 1.934 

 
5.402 4.840 1.999 1.914 

 
5.354 4.782 1.992 1.901 

 
The contribution of ellipsoids ( H -tensor) was found 
by utilizing the analytical solutions of  
Eshelby [2, 9]. 
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