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1  Introduction 

Fiber reinforced composites get an increasing 
attention in the development of new materials. By 
controlling the manufacturing process, it is possible 
to get the desired material properties. With the 
recent advances in numerical modeling of 
composites, it is possible to predict the effective 
material properties of the composites. 

A number of numerical and analytical methods have 
been developed to estimate the effective coefficients 
using homogenization methods. By micro-
mechanical models based on unit cells the problem 
can be reduced on investigation of a periodic part of 
an infinite structure. But existing approaches are 
often restricted to certain types of arrangements. 
Mostly typical simple arrangements like square or 
hexagonal pattern have been investigated which 
result in an overall transverse isotropic behavior of 
the composite. An interesting goal is to create 
composites with orthotropic behavior in the 
transverse plane which can be achieved by rhombic 
fiber arrangements in connection with high volume 
fraction for the fibers. But nearly no results are 
published in literature for such patterns of fibers. 
Jiang [1] and Guinovart-Díaz [2] calculated with 
analytical methods effective shear coefficients for 
selected rhombic angles. 

At our institute a general numerical homogenization 
technique for calculating effective material 
properties of composites with various fiber 
distributions has been developed [3,4]. Special 
procedures were used to create a comprehensive, 
highly automatic homogenization tool which 
combines pre-processing steps for geometrical 
modeling and applying of boundary conditions with 
finite element solution process. This paper is 
focused on special considerations for models with 
rhombic fiber pattern for elastic composites. 

2  Algorithm and Models 

The numerical algorithm is based on a micro-
mechanical unit cell model which contains the real 
distribution of inclusions. The unit cells represent a 
periodic array of the global structure. To ensure 
periodicity also after deformation appropriate 
periodic boundary conditions must be applied.  
The basic idea for calculating effective material 
properties is that the strain energy stored in the 
heterogeneous system must be approximately the 
same like in the homogeneous system. With FEM 

for elastic case the averaged element strains ijS  and 

stresses ijT  are calculated and summed over all 

elements k of the unit cell 
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where kV  is the element volume and V is the 

volume of the unit cell. Then from the following 
constitutive equations for such orthotropic case 
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the effective elastic constants can be calculated by 
constructing six different load cases in this sense 
that only one particular strain component is non-zero 
and all others are zero. This can be achieved by 
applying appropriate boundary conditions which 
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produce pure tension and pure shear. E.g., for the 

calculation of effC11  only 11S  may be non-zero. Then 
effC11  can be calculated from first row of constitutive 

equations by the ratio of  11 11/T S and 21
effC  from the 

second row by the ratio of 22 11/T S  and analogous 

31
effC  etc. Because the effective coefficients are 

calculated in the global coordinate system x1-x2, 
which is not identical with the principal axes of the 
rhombus we get also non-zero coefficients 

54 61 62 63, , ,eff eff eff effC C C C . 

All calculations have been made with FE package 
ANSYS which provides with the included ANSYS 
Parametric Design Language (APDL) a convenient 
open interface for user specified input scripts. 
In our approach we extract a unit cell like shown in 
Fig. 1. To calculate all coefficients for the three 
dimensional case a 3D FE model is used with one 
element in third direction (Fig. 2).  
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Fig. 1. Rhombic fiber arrangement and unit cell 

 

 

Fig. 2. 3D finite element model of unit cell 
 
The problem lies in the non rectangular geometry of 
the cell which arises problems in applying 
appropriate loads and periodic boundary conditions.  
Especially for the case of pure tension in x1 direction 
applying only traction forces results in additional 
shear strain. To overcome this problem modified 
loads are applied for this case which include a shear 
part to compensate the unwanted shear strains. 

To produce the non-zero strains for every load case 
displacement differences are applied between 
opposite surfaces of the cell. 
In particular to produce pure normal strains we 
apply: 

load case 1: non-zero strain 11S :  

    1 1
1 1

 

 X Xu u u  and 2 2
1 1 cos( )

 

    X Xu u u a  

load case 2: non-zero strain 22S : 2 2
2 2

 

 X Xu u u , 

load case 3: non-zero strain 33S : 3 3
3 3

 

 X Xu u u  

and for pure shear strains: 

load case 4: non-zero strain 23S : 3 3
2 2

 

 X Xu u u , 

load case 5: non-zero strain 31S : 3 3
1 1

 

 X Xu u u , 

load case 6: non-zero strain 12S : 2 2
1 1

 

 X Xu u u . 

Here u  is an arbitrary non-zero value. For 

simplicity 1u  is chosen. The values 

kX

iu  and 

kX

iu  are the i-th displacement components on unit 

cell boundary surfaces 
kX  and 

kX  like shown in 

Fig. 3. a and  which appear in load case 1 are the 
base length of the unit cell and the rhombic angle, 
respectively. 
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Fig. 3. Notation of unit cell surfaces 

 
To ensure the full periodicity in every load case all 
remaining displacement differences are set to zero. 
To apply these displacement differences opposite 
nodal pairs are coupled by appropriate constraint 
equations. For that a special meshing procedure 
ensures identical mesh configurations on opposite 
surfaces. To avoid rigid body movement one 
arbitrary node must be fixed in all directions. We 
used the corner node at origin of coordinate system. 
With the extension for load case 1 the numerical 
homogenization algorithm can also be used for 
composites with parallelogram fiber arrangement. 



 

3  

AN EXTENDED NUMERICAL HOMOGENIZATION APPROACH FOR 
COMPOSITES WITH RHOMBIC FIBER ARRANGEMENTS 

3  Results  

For testing the algorithm and comparison with 
results from literature isotropic material properties 
were used with a high stiffness ratio of 120 between 
fiber and matrix [1]. In particular the material 
constants listed in Table 1 were chosen. 
 

Table 1: Material constants for the components 

  Young's modulus  Poisson's ratio 

Matrix  2.6 GPa  0.3 
Fiber  312 GPa  0.3 

 
For general verification of the algorithm the results 
were compared with Jiang [1] who presented values 
for rhombic angles of 45 and 75 degrees and 
different volume fractions (see Tables 2 and 3). A 
very good agreement was found. 
 
Table 3: Comparison of shear coefficients with Jiang 

for rhombic angle of 45 degrees 

Vol. 
frac. 

C44 
Jiang 

C44 
FEM 

C54 
Jiang 

C54 
FEM 

C55 
Jiang 

C55 
FEM 

0.1  1.223  1.227  ‐0.005  ‐0.005  1.214  1.217 

0.2  1.516  1.526  ‐0.024  ‐0.025  1.468  1.476 

0.3  1.922  1.937  ‐0.071  ‐0.071  1.780  1.791 

0.4  2.533  2.547  ‐0.177  ‐0.174  2.180  2.185 

0.5  3.621  3.641  ‐0.441  ‐0.446  2.738  2.749 

 
Table 3: Comparison of shear coefficients with Jiang 

for rhombic angle of 75 degrees 

Vol. 
frac. 

C44 
Jiang 

C44 
FEM 

C54 
Jiang 

C54 
FEM 

C55 
Jiang 

C55 
FEM 

0.1  1.218  1.220  0.001 0.001  1.219  1.220

0.2  1.488  1.493  0.007 0.007  1.492  1.497

0.3  1.834  1.846  0.020 0.020  1.844  1.857

0.4  2.295  2.318  0.047 0.049  2.320  2.344

0.5  2.952  2.994  0.106 0.109  3.009  3.051

0.6  4.001  4.087  0.238 0.251  4.129  4.224

 
To study the overall behavior of such composites all 
coefficients where calculated for a rhombic angle 
range from 30 to 90 degrees and for various volume 
fractions.  
Fig. 4 shows pairs of selected effective elastic 
coefficients over change of rhombic angle. It can 
clearly be seen that for low rhombic angles a typical 
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Fig. 4. Orthotropic behavior in transverse plane for 
selected effective elastic coefficients vs. change of 

rhombic angle with fixed fiber volume  
fraction of 0.4 
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Fig. 5. Behavior of selected effective elastic 
coefficients vs. change of volume fraction for three 

rhombic angles 

 

orthotropic behavior in the transverse plane is 
obviously. Furthermore the special cases for 60 
degrees (hexagonal arrangement) and 90 degrees 
(square arrangement) show the typical transverse 
isotropic behavior. This can be seen by identical 
values of both coefficients in every plot. 
In Fig. 5 the behavior of selected coefficinets is 
shown over volume fraction and for three different 
rhombic angles. Due to geometry of rhombus the 
maximum volume fractions depends on the rhombic 
angle. E.g. for rhombic angle of 30 degrees only a 
volume fraction until 0.4 can be reached.  
The second plot shows obviously that this axial 
coefficient is independent of rhombic angle. In the 
third plot it is interesting that with lower rhombic 
angle a higher in-plane shear stiffness can be 
reached. 

 

4  Conclusions  

A comprehensive tool for calculating effective 
material constants is introduced. Especially it is 
applied to composites with included fibers by 
rhombic arrangement. With this approach the 
excellent orthotropic behavior in transverse plane of 
such composites can be exhibited. 
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