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ABSTRACT 

We present an adaption of the Orientation Corrected Shaking (OCS) method, originally developed 

for discontinuous short fiber-reinforced polymers, for generating continuous discontinuous fiber-

reinforced polymers. Due to the combination of continuous and discontinuous reinforced phases, the 

interface between the two layers needs to be accounted for in a realistic way. The material flow during 

compression molding of CoDiCoFRP leads to ply migration at the interface resulting in an interlinked 

region between the layers, which is observable in 3D imaging. To account for this type of interface, we 

adapt the OCS method to enforce soft constraints for the fibers, i.e., a fiber’s midpoint but not the entire 

fiber is constrained to its respective layer. Hence, at the interface fibers may penetrate the opposite 

phase, providing a link between the phases. In a computational study, we generate CoDiCoFRP with the 

OCS method and investigate whether the selection of the fiber length distribution type for given volume-

weighted mean 𝑚  and standard deviation 𝑠  influences the effective stiffness of the generated 

microstructures. For Weibull, Gamma and log-normal distribution the results almost coincide, with 

differences smaller than 0.5%, revealing that for these cases the statistical quantities 𝑚 and 𝑠 are the 

only important descriptors to model the fiber length distribution.   

 

1 GENERAL INTRODUCTION 

Continuous discontinuous fiber-reinforced polymers (CoDiCoFRP) combine the advantages of their 

two constituents, i.e., the favorable stiffness to weight ratio of the continuously (Co) and the design 

freedom of the discontinuously (DiCo) reinforced phase. For this reason, CoDiCoFRP has a significant 

potential for lightweight applications.  

Typical manufacturing processes lead to components whose local fiber microstructures are both 

random and highly anisotropic. As the effective properties depend on both the characteristics of the 

microstructure and the local constitutive properties, they are also anisotropic. 

Computational homogenization methods [1] permit to reduce the high experimental effort to 

determine the mechanical properties of heterogeneous materials. To ensure reliable results, digital twins 

have to be generated which represent the real microstructures adequately. In this context, synthetic, i.e., 

generated, microstructures complement data obtained from 3D imaging, which is expensive to obtain in 

large numbers.  

 

2 GEOMETRIC DESCRIPTION OF CODICOFRP 

We consider a two-layer microstructure with rectangular cell 𝑄 = [0, 𝑄1]  × [0, 𝑄2] × [0, 𝑄3] in ℝ3 . 

The cell is filled with right circular cylindrical fibers in a non-overlapping configuration. The bottom 

layer with cell dimensions 𝑄𝐵 = [0, 𝑄1]  × [0, 𝑄2] × [0, 𝑄𝐼𝐹 ] , where 𝑄𝐼𝐹  denotes the height of the 

interface between the two layers, consists of 𝑁𝐵  discontinuous fibers and the upper layer with cell 

dimension 𝑄𝑈 = [0, 𝑄1]  × [0, 𝑄2] × [ 𝑄𝐼𝐹 , 𝑄3] comprises 𝑁𝑈  continuous and unidirectional fibers. 

A fiber is described by its diameter 𝐷, its lengths 𝐿, its midpoint 𝒙 ∈ 𝑄 and its direction 𝒑 ∈ 𝑆2, 

where 𝑆2 denotes the unit sphere in ℝ3 . The diameter 𝐷 is assumed to be uniform for all fibers. For the 
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DiCo reinforced phase the fiber lengths follow a given fiber length distribution 𝜌(𝐿), i.e., are non-

uniform. The fiber volume content is quantified by the fiber volume fraction, is computed in a non-

overlapping configuration, e.g. for the bottom layer, via 

𝜙 = 
𝜋 𝐷2

4 𝑄1  𝑄2  𝑄𝐼𝐹
𝐿total     with the total length     𝐿total  =  ∑ 𝐿𝑘

𝑁𝐵
𝑘 = 1  . (1)  

For describing the fiber orientation, we use the fiber orientation tensors introduced by Advani et al.  

[2] and Kanatani [3] as a compact characteristic of the fiber orientation distribution. Considering 𝑁 

fibers with lengths 𝐿𝑘, the volume-weighted fiber orientation tensor of 𝑙𝑡ℎ-order computes as 

𝔸 <𝑙> =
1

𝐿total  
 ∑ 𝐿𝑘

𝑁
𝑘 = 1  𝒑𝑘

⨂𝑙 . (2) 

For fiber reinforced composites, typically fiber orientation tensors of second order 𝑨 are available. 

However, effective elastic properties are determined by the fiber orientation tensor of fourth order 𝔸 [5]. 

To estimate fiber orientation tensors of higher order from fiber orientation tensors of second order, 

closure approximations are used [6]. For the Co reinforced phase, the fiber orientation tensor of second 

order is given as 𝑨 ≙  diag(1.0, 0.0, 0.0) in diagonal form due to the unidirectional arrangement of fibers 

in 𝑥-direction. 

 

3 MICROSTRUCTURE GENERATION OF CODICOFRP 

To generate microstructures  of CoDiCoFRP which match the previously measured data accurately, 

the randomness of the fiber lengths and orientations needs to be considered. In contrast to pure DiCo 

material, the fiber’s locations have to be constrained to their layer and the interfacial area between the 

layers has to be modelled. Additionally, we wish to ensure geometric periodicity of the generated 

volume elements, as this feature reduces the necessary size of the representative volume element [7] 

which in turn decreases the runtime of the microstructure generation and homogenization.  

To attend to these tasks, we adapt the Orientation Corrected Shaking (OCS) method [8], which is 

capable of generating periodic microstructures for short fiber-reinforced polymers with almost planar 

fiber orientations. The OCS method accounts for a prescribed fiber length distribution, e.g., the Weibull-

distribution, see Lauff et al. [8]. The fiber orientations are represented by an orientation tensor of fourth 

order, which is approximated from a prescribed fiber orientation tensor of second order by an intrinsic 

closure approximation.  

To clarify the necessary adaptions of the OCS method, we briefly recall the general procedure of the 

algorithm first. In an initial step, fibers are sampled according to the prescribed fiber length distribution 

up to the necessary fiber volume fraction. For the initial configuration, the sampled fibers are placed in 

a planar and layer-wise unidirectional arrangement. With respect to the given second-order fiber 

orientation tensor in diagonal and ordered form 

𝑨 ≙  diag(𝑎1 , 𝑎2 , 𝑎3)     with     𝑎1 ≥ 𝑎2 ≥  𝑎3, (3) 

 

initial arrangement represents the fiber orientation tensor  

𝑨init ≙  diag(𝑎1 , 𝑎2 , 0) / (1-𝑎3) (4) 

exactly. Subsequent to the initial step, in the shaking step the fibers are shaken to introduce randomness. 

Starting with the longest fiber, for each fiber random changes of its midpoint and direction are made 

until a configuration is found where no collision with already shaken is detected. If such a configuration 

is not found within a maximum number of attempts 𝑚𝑚𝑎𝑥 , then the microstructure generation will fail.  

For further details on the microstructure generation with the OCS method, see Lauff et al. [8].  

To adapt the initial step for the microstructure generation of CoDiCoFRP, we conduct the initial 

procedure for each layer within its respective cell 𝑄𝑈  or 𝑄𝐵  separately. Afterwards, the two cells are 

joined together to obtain the entire cell 𝑄.  

For the shaking step, two modifications are necessary: First, we have to account for the interfacial 

region between the two layers. Due to the material flow during compression molding of CoDiCoFRP, 

ply migration between the two phases occurs [9]. To account for the linked interface, we model the 
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fibers’ locations with soft constraints, i.e., the midpoints but not the entire fiber are constrained to the 

respective layer of the fiber. We realize the soft constraints within the OCS method by correcting the 𝑧-

component of a fiber’s midpoint if it has changed. The correction follows the prescription 

𝑥𝑧 = {
𝐿min , 𝑥𝑧 < 𝐿min,
𝐿max , 𝑥𝑧 > 𝐿max,

𝑥𝑧, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
   

(5) 

where 𝐿min denotes the lower boundary in 𝑧-direction of the fiber’s layer and 𝐿max  the upper boundary.  

The second modification concerns the shaking order of the fibers to ensure that the typically high volume 

fraction in the Co reinforced phase is reached. Hence, first the Co fibers are shaken. Subsequently, the 

remaining DiCo fibers are shaken in descending order of their lengths. 

In Figure 1, a synthetic microstructure of CoDiCoFRP generated with the adapted OCS method is 

shown. The edge length of the microstructure is 𝑄𝑖 = 600𝜇m and the Co reinforced tape occupies one 

sixth of the total height. For both phases, the fiber diameter is  𝐷 = 10𝜇𝑚. For the DiCo reinforced 

phase, the second-order fiber orientation tensor 𝑨 ≙  diag(0.79, 0.19, 0.02) is prescribed and the fiber 

lengths are sampled from the Weibull distribution with volume-weighted mean 𝑚 = 250𝜇m and a 

standard deviation 𝑠 = 120 𝜇m. The fiber volume fraction in the DiCo reinforced phase is 15% and in 

the Co reinforced phase 40%.  

 

 

 

Figure 1: Synthetic microstructure for CoDiCoFRP generated with the adapted OCS method. 

 

 

4 PROBABILITY DISTRIBUTIONS TO MODEL THE FIBER LENGTH DISTRIBUTION 

As a result of the manufacturing process, the fiber lengths in the DiCo reinforced phase vary 

throughout the component. In engineering practice, typically the measured volume-weighted mean 𝑚 

and standard deviation 𝑠 of real fiber-reinforced microstructures are available as elementary statistics of 

the fiber length distribution. According to Mehta and Schneider [10], sampling lengths from an adequate 

distribution function with respect to both the volume-weighted mean 𝑚  and standard deviation 𝑠 

permits to capture the influence of varying fiber lengths on the effective properties, i.e., the assumption 

of constant lengths of mean 𝑚 is not sufficient for generating representative volume elements. Due to 

the lack of knowledge on the underlying distribution function, the type of distribution to model the fiber 

length distribution needs to be chosen for the microstructure generation. For short-fiber reinforced 

composites, the Weibull distribution, defined via the density function  

𝜌𝜆 ,𝛽(𝐿) =  
𝛽

𝜆
(

𝐿

𝜆
)

𝛽−1

𝑒−(𝐿/𝜆)𝛽
,     𝐿, 𝜆, 𝛽 > 0, 

(6)  

the Gamma distribution, defined via the density function 
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𝜌𝛼,𝛽(𝐿) =  
𝛽𝛼

Γ(𝛼)
𝐿𝛼−1𝑒−𝛽𝐿,    Γ(𝑧) = ∫ 𝑡 𝑧−1

∞

0
𝑒 −𝑡  d𝑡 ,    𝐿, 𝛼, 𝛽 > 0 

(7) 

and the log-normal distribution, defined via the density function  

𝜌𝜎𝑛 ,𝜇𝑛
(𝐿) =  

1

𝜎𝑛 𝐿 √2𝜋 
𝑒

−
(𝑙𝑛 𝐿−𝜇𝑛)2

2𝜎𝑛
2

,     𝐿, 𝜎𝑛 , 𝜇𝑛  > 0 
(8) 

are typically used for modelling the fiber length distribution [11, 12, 13]. In Figure 2, the Weibull,  

Gamma and log-normal distribution functions with equal volume-weighted mean 𝑚 = 250𝜇𝑚   and 

standard deviation 𝑠 = 120 𝜇m are shown. All three distribution functions show a similar qualitative 

curve, which is characterized with a peak at fiber lengths shorter than the volume-weighted mean 𝑚 and 

small probabilities for very long fibers. This overall behavior matches with the fiber length distributions 

measured for real short fiber-reinforced composites [4]. However, the distribution functions differ in the 

exact quantitative values, which in turn influence the realized fiber lengths in the generated 

microstructures.  

 

 

 

 

Figure 2: Weibull, Gamma and log-normal distribution with volume-weighted  

mean 𝑚 = 250𝜇𝑚  and standard deviation 𝑠 = 120 𝜇m. 

 

 

5 COMPUTATIONAL INVESTIGATIONS 

5.1 Setup 

For the Co and the DiCo fiber-reinforced phase, we consider a PA66 matrix with E-glass fibers. The 

isotropic elastic parameters are listed in Table 1, obtained by Hessman et al. [11].  

 

 

E-glass fibers  PA66 matrix 

𝐸 = 72.0 GPa  𝐸 = 3.0 GPa 

𝜈 = 0.22           𝜈 = 0.40       

 

Table 1: Material properties for the PA66 matrix and the E-glass fibers [11]. 

 

 

We assume a fiber diameter of  𝐷 = 10𝜇𝑚. For the DiCo reinforced phase, we prescribe a second-

order fiber orientation tensor 𝑨 ≙  diag(0.79, 0.19, 0.02) and as statistical quantities for the fiber length 
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distribution a volume-weighted mean 𝑚 = 250𝜇m and a standard deviation 𝑠 = 120 𝜇m . The fiber 

volume fraction in the DiCo reinforced phase is 15% and in the Co reinforced phase is 40%. We generate 

periodic microstructures with cubic cell-size with dimensions 𝑄𝑖 = 600𝜇m, where the Co reinforced 

tape occupies one sixth of the total height. 

Within the OCS method, we correct fiber directions until the relative error of fiber-orientation tensor 

of fourth order is lower than 10−4 . We choose as minimum fiber distance 20% of the fiber diameter, 

i.e., 2 𝜇m. The selected shaking parameters as well as the maximum number of attempts for the OCS 

method are listed in Table 2. 

 

 

𝛼 𝛽 ∆𝜑2  𝑚𝑚𝑎𝑥  

4 2 3𝜋/8 107  

 

Table 2: Used algorithmic parameters for the OCS method. 

 

 

The effective elastic properties are computed with FFT-based computational homogenization 

software [14, 15], a discretization on a staggered grid [16] and a conjugate gradient solver [17, 18], 

terminated at a relative tolerance of 10−5. We refer to the review article [19] for background. For the 

computation of the effective properties, the voxel edge-length is set to 2𝜇m. The effective elastic 

constants are computed based on six independent load cases. As the second-order fiber orientation tensor 

is orthotropic, also the effective properties are orthotropic on average. Hence, we report on the effective 

orthotropic engineering constants, which are approximated from the effective elastic tensor [20, 21]. 

  

5.2 Comparison of the effective stiffness for different fiber length distributions 

An accurate realization of the elementary statistical quantities, both the volume-weighted mean 𝑚 

and the standard deviation 𝑠, of the fiber length distribution permits to generate microstructures with 

matching effective properties compared to experimental data [10]. In this section, we study whether 

besides the elementary statistical quantities also the selected fiber length distribution type has an 

influence on the effective stiffness of the synthetic microstructures. Therefore, we consider the Weibull,  

Gamma or log-normal distribution as fiber length distribution, which are typically used for short fiber-

reinforced polymers in literature. For each distribution function, we generate ten microstructures and 

compute the effective stiffness. The mean values and the standard deviations of the approximated 

orthotropic Young’s moduli are listed in Table 3. 

 

 

 𝐸1  𝐸2  𝐸3  errorth  

 GPa GPa GPa % 

Weibull 11.44
± 0.03 

5.33
± 0.01 

4.96
± 0.01 

0.57
± 0.01 

Gamma 11.48
± 0.03 

5.34
± 0.01 

4.96
± 0.01 

0.57
± 0.01 

log-normal 11.45
± 0.02 

5.33
± 0.01 

4.96
± 0.00 

0.59
± 0.02 

 

Table 3: Comparison of the approximated effective Young’s moduli of microstructures generated  

with the Weibull, Gamma or log-normal distribution function as fiber length distribution with  

volume-weighted mean 𝑚 = 250𝜇m and standard deviation 𝑠 = 120 𝜇m. 
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As we report on the effective orthotropic engineering constants, we need to control the quality of the 

orthotropic approximation of the effective elastic tensor. By assessing the orthotropic approximation 

error errorth , we observe small errors below 1% confirming that the orthotropic approximation of the 

measured effective stiffness is suitable.  

Let us focus on the approximated orthotropic Young’s moduli. The results feature small random 

errors, which confirms the representativity of the chosen unit cell size. We observe that the results almost 

coincide for all fiber length distribution functions. The highest relative difference of 0.35% is computed 

for the Young’s modulus 𝐸1  between the Weibull and log-normal distribution. Hence, it appears that the 

selection of one of those three distribution functions has no significant influence on the computed 

effective stiffness. As a result of this study, we emphasize that the volume-weighted mean 𝑚 and the 

standard deviation 𝑠 are sufficient descriptors for the fiber length distribution of short fiber-reinforced 

composites when combined with a fiber length distribution following the overall behavior shown in 

Figure 2. 

 

6 CONCLUSIONS 

In this work, we presented an adaption of the Orientation Corrected Shaking (OCS) method [8] to 

generate CoDiCoFRP consisting of a discontinuously reinforced bottom layer and a continuously 

reinforced upper layer. Therefore, we enabled the assembly of several cells to an entire microstructure 

for the initial step of the OCS method. Within the shaking step, we implemented soft constraints in the 

form of a correction of the fibers’ midpoints to force them to be in their respective layer. By using these 

soft constraints, we realized a linking between the Co and the DiCo reinforced phase, which is typically 

observed for real CoDiCoFRP. Additionally, the shaking order of the fibers is changed, i.e., the Co 

reinforced fibers are shaken first and subsequently the DiCo reinforced fibers are shaken in descending 

order of their lengths, to ensure the capability of achieving high volume fractions in the Co reinforced 

phase.  

The work includes a study whether the selection of the fiber length distribution type for given  

volume-weighted mean and standard deviation influences the effective stiffness of the generated 

microstructures. We observed that the results almost coincide for all fiber length distribution functions, 

with differences smaller than 0.5%. Hence, we conclude that the distribution function has no significant 

influence on the effective stiffness as long as the overall behavior of the distribution function follows 

the quantitative shape shown in Figure 2. We emphasize that the important quantities to describe the 

fiber length distribution are the volume-weighted mean and standard deviation.  
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