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ABSTRACT 

Bayesian calibration is a statistical framework for combining data from experimental tests and 

numerical models, while formally accounting for uncertainty due to: i) unknown model inputs, 

ii) experimental observation errors, and iii) inaccuracies in the assumed model physics. Accurately 

quantifying such uncertainty can help ensure consistency when comparing Finite Element models with 

structural test data, and provide statistical confidence metrics in the predictions made by these models. 

This capability will be invaluable in enabling improved aircraft certification processes informed by 

virtual testing using combined data from mathematical models and component-level structural tests. 

In this paper, Digital Image Correlation (DIC) data from preliminary compression tests of a 

composite C-spar are used to calibrate a Finite Element model of the spar, implemented in ABAQUS. 

Torsional springs are used to model the imperfectly clamped boundary conditions of the test specimen, 

which are considered uncertain. The aim of this study is to learn about the stiffness of these springs, as 

well as an uncertain longitudinal modulus and ply thickness. The primary contribution of this paper is 

to address challenges associated with calibrating the full-field nodal displacement output using the high-

dimensional data produced by data-rich structural tests, in a efficient approach using Gaussian process 

emulators. Fitting the model to such a large volume of data is the key challenge addressed. 

 

1 INTRODUCTION 

Certification of composite aerospace structures is currently undertaken via a series of tests of 

increasing size and complexity known as a “test pyramid” or “building block” approach. Empirical 

knockdown factors based upon coupon test data are used along alongside relatively few tests at higher 

length-scales, leading to conservative strain limits, and reducing the benefits of tailoring in composite 

structures. Over-dependence on coupon tests may be overcome through virtual testing, combining data 

from both computer models and component-level experimental tests. To ensure consistency between 

these different sources of data, it is necessary to quantify the effects of myriad sources of uncertainty 

associated with unknown model inputs (e.g. defects/features [1], boundary conditions, variability in 

material properties [2]), experimental observation errors, and discrepancies [3] in model predictions due 

to incorrect or missing physics.  

Uncertainty quantification using Finite Element (FE) models can be computationally expensive due 

to the large number of required model evaluations. It is therefore common to use nonparametric 

regression methods such as Gaussian Processes [4,5], Quantile Regression [6] or Kernel approaches [7] 

to create surrogates for FE models in uncertainty analyses. Gaussian Process Emulators are popular as 

these are highly versatile and can represent a large variety of complex functions, and can also give a 

pointwise estimate of uncertainty in predictions [4,5]. Gaussian processes have, for example, been used 

in stochastic finite element analysis [8], to model vibration of composite shells [9] and aeroelastic 

stability of composite plates [10] with uncertain properties, to predict failure of composite coupons 

subject to Open-Hole Tension [11], and in preliminary design of aircraft wings under uncertainty [12]. 
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Bayesian model calibration [13,14] is a statistical framework for making predictions informed by 

both experimental and numerical data, while formally accounting for the above sources of uncertainty, 

and learning about parameters upon which both the mechanical model and physical system depend 

which cannot be controlled in experiments. The calibration framework proposed by Kennedy and 

O’Hagan [13] is built around Gaussian Process Emulators for efficiency, and explicitly incorporates 

uncertainty due to model discrepancy and observation error. When datasets are large this univariate 

approach can, however, result in a high-dimensional discretisation of the calibration problem which is 

extremely costly to solve, rendering it unsuitable for calibrating FE models using data rich full-field 

experimental techniques such as Digital Image Correlation (DIC). Higdon et al. [14] proposed a 

multivariate approach which uses Singular Value Decomposition (SVD) to obtain a reduced dimensional 

representation of simulation and experimental output to overcome this limitation. A similar approach 

was recently used by Ding et al. [15] to fit Gaussian Process Emulators to a full-field model output.  

The aim of this paper is to demonstrate Bayesian model calibration by combining FE model output 

with data from structural tests of composite components. DIC displacement measurements from 

compression tests of a C-spar are used to calibrate an ABAQUS model of the spar. The multivariate 

calibration framework of [14] is used to fit an emulator, perform the calibration, and make subsequent 

predictions. In this preliminary investigation, modelling is limited to a fixed applied load in the linear 

regime. Calibration is used to learn about an imperfectly clamped boundary condition, the longitudinal 

modulus and ply thickness of the specimen. Comparisons between the calibrated model representing the 

“true” spar (with inputs inferred for the as-manufactured properties and actual test boundary condition), 

and experimental data are subsequently made using the calibrated model. 

 

2 SPAR MANUFACTURE AND TESTING 

Tests were performed on a C-spar with geometry taken from previous manufacturing trials [16,17], 

with key dimensions shown in Figure 1. The geometry incorporates a central recessed feature such as is 

commonly used to accommodate changes in thickness around pad-ups arising, for instance, where the 

pylon or landing gear attach to the wing box. The spar was manufactured from 24 plies of AS4/8552 

unidirectional pre-preg with constant stacking sequence of [(±45)3/(0/90)3]S across the spar, via Double 

Diaphragm Forming over a male mould at a temperature of 60°C, as outlined in [16]. 

 

 

  
 

Figure 1: Geometry of C-spar. All dimensions are stated in mm, for the Inner Mould Line. 

 

 

Preliminary quasi-static compression tests at an applied load of 10 kN have been undertaken at the 

University of Bristol. The spar was loaded about the end at z = 420 mm (see Figure 1). The ends of the 

spar were encapsulated in grooved steel blocks to prevent brooming to enforce a clamped boundary 

condition. The effective length between the blocks was 420 mm, with the spar trimmed to slightly longer 
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and the excess length embedded within the block grooves using a two-part epoxy resin (Araldite 2011). 

The block and spar assembly was mounted between flat platens so that the line of action of the load was 

through the centroid of the spar. Stereo DIC was carried out with two FLIR Blackfly 12 MP cameras 

with 100 mm Tokina lenses to track deformation of the spar surface during the test using the MatchID 

image acquisition and processing system [18]. Analysis is restricted to a field of view focussed on an 

external corner of the spar, capturing displacement in both the web and a single flange. The images were 

processed using Zero Normalised Sum of Squared Differences (ZNSSD) correlation, a step size of 10 

and a subset size of 41, to produce a point cloud of 4117 measurements. Displacement components u, v 

and w were provided in a Cartesian coordinate system with x-axis aligned approximately with the spar 

longitudinal axis, misaligned with the model coordinate system shown in Figure 1.  

 

3 FINITE ELEMENT MODEL 

The C-spar is modelled in ABAQUS [19] using C3D8 hexahedral elements and an approximate 

element size of 5 mm, with a single element through the thickness of each ply, resulting in 116877 

nodes. A static analysis is undertaken with geometric nonlinearity enabled. A concentrated load of 10 kN 

is applied to a reference point at the section centroid at z = 420 mm, and beam Multi Point Constraints 

(MPCs) are used to tie all nodes at this section to the reference point such that the undeformed shape is 

retained, thus distributing the load and replicating the end blocks. A similar strategy is used at the 

unloaded end (z = 0 mm). Slack in the bolts used to fasten the end block to the test fixture resulted in an 

imperfect clamped boundary in the test, with some rotation observed about the y axis. To represent this 

condition, a torsional spring with stiffness K is tied to the reference points at each end of the beam, and 

rotation about all other axes is fixed to zero. Values of K close to zero result in a simply supported 

boundary condition, whereas as K tends to infinity the boundary becomes clamped. The model is 

summarised in Figure 2, which also shows longitudinal displacement, w, for the described cases.  

 

 
 

Figure 2: ABAQUS model boundary conditions and longitudinal displacement, w, plotted on 

(exaggerated) deformed shape for different torsional spring stiffnesses, K. Labelled boundary 

conditions apply to both cases, but are omitted for clarity. 

 

 

4 ALIGNMENT OF THE DIC DATA AND MODEL  

To make comparisons between the FE model and DIC data it is useful to evaluate the model at the 
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coordinates of the experimental data. The DIC data is first aligned with the external surface of the mesh 

using the fine registration capability of open-source 3D point cloud and mesh processing software 

CloudCompare [20]. The resulting rotation matrix is also used to express the displacements in the model 

coordinate system. To correct for rigid body motion and set the displacement of the fixed end to zero, 

the mean displacement from ten points close to the fixed end is subtracted from all data points. Each 

point is subsequently projected onto the surface of the element with the closest centroid, to determine a 

set of Cartesian coordinates directly on the mesh. Although the chosen element may not actually be that 

which is closest to the point in question, this element is taken as an initial guess in an iterative search. 

The projected points are subsequently expressed in the local natural coordinate system used by 

ABAQUS to define displacements within an element, which is illustrated for a quadrilateral element in 

Figure 3. This system transforms an arbitrary quadrilateral in x, y, z onto a regular square with 

coordinates g and h defined on the interval [-1, 1]. The coordinates of a brick element incorporate a third 

component, r, also defined on [-1, 1], however, this coordinate is equal to 1 for all points on the outer 

surface of the spar, hence the system reduces to that of a quadratic element. 

 

 
 

Figure 3: Natural coordinate system for a first order quadrilateral element [19] 

 

 

To determine the longitudinal displacement at a specified set of natural coordinates w(g,h), the 

displacement output at each of the four nodes, w1-4, may be interpolated using [19]: 

𝑤(𝑔, ℎ) = (1 − 𝑔)(1 − ℎ)
𝑤1

4
+ (1 + 𝑔)(1 − ℎ)

𝑤2

4
+ (1 + 𝑔)(1 + ℎ)

𝑤3

4
+ (1 − 𝑔)(1 + ℎ)

𝑤4

4
 (1) 

The forward mapping from natural coordinates g and h to Cartesian coordinates is provided by 

substituting nodal coordinates xi,, yi and zi  for wi in Eq. (1), yielding a set of three equations. The inverse 

mapping from the Cartesian coordinates of the projected DIC data, onto their corresponding element 

natural coordinates, is provided by solving this set of equations. As there is no general closed-form 

solution for this mapping, a Newton-Raphson approach has been implemented as described in [21]. 

Convergence of the Newton-Raphson to g or h values outside of the interval [-1, 1] is taken as an 

indication that the initial choice of element is incorrect. As the FE mesh used in this paper forms a 

regular grid, the converged value of g and h is used to inform the direction of the search for the correct 

element. For example, if g converges to a value greater than 1, the above process is repeated for the 

adjacent element in the direction of increasing g, which is to the right in Figure 3. Points found to be 

outside of the domain of the finite element mesh are removed from the dataset. 

For 4117 data points the described mapping converged in approximately 10 seconds. The aligned 

and projected DIC data points are overlaid on the model in Figure 4a). The subsequent mapping is 

illustrated in Figure 4b) by the plotting the data at their natural coordinates, within square elements 

defined on 𝑔, ℎ ∈ [−1, 1], arranged in a regular grid according to each element’s position in the mesh. 

 

5 BAYESIAN MODEL CALIBRATION 

5.1 Case study overview 

The aim of the calibration is to learn about the values of model uncertain model inputs which are 

representative of the underlying properties of the physical test. This case study will seek to learn about 
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the imperfectly clamped boundary condition described in Section 3, a significant source of uncertainty 

in the test, by learning about the stiffness, K, of the torsional springs used in the model. Values will also 

be inferred for the longitudinal modulus, E11, and ply thickness, tply, as example material and geometric 

properties. These properties are uncertain as variability across pre-preg batches, albeit small, means that 

precise values are not known for the test specimen. For simplicity, this preliminary calibration case study 

will learn about these quantities based solely upon the longitudinal displacement, w.  

 
 

 

 

 

 

Figure 4: Alignment of the DIC data with the model: a) projection of data onto the model surface in 

Cartesian coordinates, and b) data expressed in natural coordinates of the corresponding element, 

arranged in a regular grid, with local coordinates of each element defined on 𝑔, ℎ ∈ [−1,1]. Colour 

bars indicate longitudinal displacement, w. 

 

 

Bayesian inference requires the specification of a prior distribution for all uncertain quantities, 

representing belief in their values before seeing the test data. A statistical model for the data must also 

be given, which dictates the likelihood function. Once these are specified, posterior samples may be 

drawn, representing belief in the values of the uncertain quantities after seeing the data. The selected 

statistical model is summarised in the following Subsections. Prior distributions for the uncertain inputs 

are summarised in Table 1. The prior on spring stiffness, K, is taken as log-uniform, with bounds chosen 

to span behaviour ranging from simply supported to clamped, as determined from a parametric study. 

The results of this study are shown in Figure 5, overlaid with the prior Probability Density Function 

(PDF). A log-uniform prior is chosen as the observed switch in response occurs over a log scale. 

 

 

Input Distribution Parameter 1 Parameter 2 

K (Nm/rad) Log-uniform 100.0 1.0×109 

E11 (GPa) Gaussian 115.6 6.0 

tply (mm) Gaussian 0.196 5.0 

 

Table 1: Prior distribution parameters for the uncertain model inputs. Parameters 1 and 2 are the mean 

and Coefficient of Variation (CoV, %) respectively for a Gaussian distribution, and the lower and 

upper bounds for log-uniform. Parameters for E11 are taken from published coupon test data [22]. The 

mean tply is taken from [23], with CoV chosen by engineering judgment. 

 

 

5.2 Gaussian process emulator for high-dimensional model output 

A simplified version of the multivariate framework from [14] is used to calibrate the FE model. This 

method is selected as both the model output and DIC data are high-dimensional, each comprised of 

thousands of entries. For computational efficiency, a Gaussian process emulator is used as a surrogate 

a) b) 
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model for the displacement. To render the Bayesian inverse problem tractable, the dimension of the data 

is reduced via an efficient decomposition into a p-dimensional basis representation of the displacement.  

 

 

 
 

Figure 5: Parametric study showing longitudinal displacement, w, of the reference point at the loaded 

end of the spar against the natural logarithm of spring stiffness, K, with the prior PDF overlaid. 

 

 

The p-dimensional basis representation of the model output may be expressed as 

𝜼(𝜽) = ∑ 𝒌𝑖𝑤𝑖(𝜽)
𝑝

𝑖=1
+ 𝝐 (2) 

where 𝜼(𝜽) denotes the FE model output, a 𝑛𝜂-dimensional vector where 𝑛𝜂 is the number of nodes, 𝜽 

is a d-dimensional vector of uncertain model inputs, 𝒌1, … , 𝒌𝑝 are a set of 𝑛𝜂-dimensional orthogonal 

basis vectors, 𝑤𝑖(𝜽) are coefficients which capture dependence upon of the displacement upon the 

uncertain inputs, and 𝛜  is the error induced by truncating the expansion. A surrogate model is 

constructed by fitting Gaussian process emulators to each 𝑤𝑖, across the space of uncertain inputs 𝜽.  

The emulators are trained using the model output for a set of m Latin Hypercube Samples of uncertain 

inputs, 𝜽1
∗ , … , 𝜽𝑚

∗ . The longitudinal displacement predictions across all nodes of each sample are stored 

in vector 𝜼𝑖, and standardised such that the mean nodal displacement is zero, and overall variance is 

one. The standardised samples are combined into matrix 𝚵 = [𝜼1, … , 𝜼𝑚], and basis vectors 𝒌1, … , 𝒌𝑝 

are obtained via SVD of 𝚵, retaining the first p terms. Following [24], the basis vectors are scaled such 

that each 𝑤𝑖(𝜽) may be modelled as a Gaussian process with zero mean and variance close to 1. 

The ABAQUS model has been run for fifty samples, the outputs of which are used to create a set of 

four basis vectors, which are illustrated in Figure 5. These vectors represent the first four principal 

components of the longitudinal displacement across the training dataset. Truncating the expansion at 

p = 4 was found to explain the total variance of the training data within a tolerance of 10-4%. 

Each 𝑤𝑖 From Eq. (2) is modelled as a zero-mean Gaussian process (GP), with prior distribution, 

𝑤𝑖~𝐺𝑃 (0, 𝜆𝑤𝑖
−1𝑅(𝜽, 𝜽′|𝝆𝑖)) (3) 

where “~"  denotes “is distributed as,” 𝜆𝑤𝑖 is the precision of the emulator of wi, and 𝑅(𝜽, 𝜽′|𝝆𝑖) is a 

covariance function given as 

𝑅(𝜽, 𝜽′|𝝆𝑖) = ∏ 𝜌
𝑖𝑗

4(𝜃𝑗−𝜃𝑗
′)

2
𝑑

𝑗=1
 (4) 

where 𝜽  and 𝜽′  are different realisations of input vector 𝜽 , and 𝝆𝒊 = (𝜌𝑖1, … , 𝜌𝑖𝑑)  is a vector of 

correlation length parameters for wi, with component 𝜌𝑖𝑗 corresponding to the jth input 𝜃𝑗. 

Suppose that 𝑤𝑖 is known for each of the m training data points and grouped together into a vector 

𝒘𝒊 = (𝑤𝑖(𝜽1), … , 𝑤𝑖(𝜽𝑚))
𝑇
, then all p of these vectors are combined into a 𝑚𝑝-dimensional vector, 

𝒘 = (𝒘1, … , 𝒘𝑝)
𝑇
. The prior distribution for w may be expressed as 

𝒘~𝒩(𝟎𝑚𝑝, 𝜮𝑤) (5)

where, 𝜮𝑤 = diag(𝜆𝑤𝑖
−1𝑅𝑤𝑖,𝜽∗ , 𝑖 = 1, … , 𝑝) (6)
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where 𝒩(𝝁, 𝚺) denotes a multivariate Gaussian distribution with mean 𝝁 and covariance 𝚺, and 𝑅𝑤𝑖,𝜽∗ 

is the m × m matrix populated by applying Eq. (4) to every combination of training sample input values, 

with the entry in the jth row and kth column given by 𝑅(𝜽𝑗, 𝜽𝑘|𝝆𝑖).  

 

  

  
 

Figure 6: First four basis vectors computed using SVD of the ABAQUS longitudinal displacement 

output, w, for a set of 50 Latin Hypercube Samples. 

 

5.3 Bayesian model calibration using high-dimensional data 

The aim of calibration is to learn about a set of uncertain model inputs to match the conditions of the 

experiment. A simplified version of [14] is used, wherein all differences between the model and 

experimental data are attributed to a single error term, 𝒆. If all DIC measurements of displacement, w, 

are grouped in a ny-dimensional vector 𝒚, the model for y may be stated as 

𝒚 = 𝜼𝑦(�̂�) + 𝒆 (7) 

where 𝜼y(�̂�) is the model output at the coordinates of the DIC data, with uncertain inputs set to �̂�, their 

“best” setting to match the conditions of the experiment. In Eq. (7), 𝜼y(�̂�) is substituted with the series 

expansion and emulator described in Section 5.2. For compatibility, the data must be standardised in the 

same fashion as the model outputs using the training data mean and standard deviation. The mean vector 

must first be interpolated to the experimental data points, using Eq. (1) and the natural coordinates of 

the DIC data, determined as outlined in Section 4. Basis vectors 𝒌i must likewise be interpolated to give 

a set of ny-dimensional vectors 𝒌𝑦𝑖. Using Eqs. (2) and (7), the joint model for the experimental data 

and emulator training data may subsequently be expressed as 

(
𝒚
𝜼) = [

𝑲𝑦 𝟎

𝟎 𝑲
] (𝒖(�̂�)

𝒘
) + (

𝒆
𝝐

) (8) 

where 𝜼 = (𝜼1; … ; 𝜼𝑚) is the concatenation of model output for all training samples into a single vector, 

𝑲𝑦 is an m × ny matrix of the interpolated basis vectors [𝒌𝑦1, … , 𝒌𝑦𝑝], 𝑲 = [𝑰𝑚 ⊗ 𝒌1, … , 𝑰𝑚 ⊗ 𝒌𝑝] 

where ⊗ is the Kronecker product and 𝑰𝑚 is an m × m identity matrix, and 𝒖(�̂�) is the p-dimensional 

representation of model at experimental input setting �̂�, with elements equivalent to 𝑤𝑖(�̂�) in Eq. (2). 

The reduced-dimensional experimental and model data has a joint prior given by 

(𝒖(�̂�)
𝒘

) ~𝒩 (𝟎𝑝(𝑚+1), 𝜮𝑧 = [
𝜮𝑢 𝜮𝑢,𝑤

𝜮𝑢,𝑤
𝑇 𝜮𝑤

]) (9) 

where Σ𝑢 = diag(𝜆𝑤1
−1 , … , 𝜆𝑤𝑝

−1 ), Σ𝑢,𝑤 = diag(𝜆𝑤𝑖
−1𝑅(�̂�, 𝜽∗|𝝆𝑖), 𝑖 = 1, … , 𝑝) and 𝑅(�̂�, 𝜽∗|𝝆𝑖) is a row 

vector populated using Eq. (4) to calculate the correlation of �̂� with each training data point 𝜽𝑗. 

𝒌1 𝒌2 

𝒌3 𝒌4 
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Calibration is an inverse problem; the quantities on the left-hand side of Eq. (8) are known, those on 

the right-hand side (the calibration inputs �̂� and hyperparameters which govern the underlying Gaussian 

processes of u and w and error terms 𝒆 and 𝝐) are uncertain and must be given prior distributions. Priors 

for �̂� are specified in Table 1. Following [14], 𝛽(1.0, 0.1) priors are used for 𝜌𝑖𝑗 and Γ(5.0, 5.0) for 𝜆𝑤𝑖. 

Components of 𝝐 and 𝒆 are taken as independent, identically distributed zero-mean Gaussian errors with 

precisions 𝜆𝜂 and 𝜆𝑦 having Γ(𝑎𝜂 , 𝑏𝜂) and Γ(𝑎𝑦, 𝑏𝑦) priors. Parameters for 𝜆𝜂 are taken as 𝑎𝜂= 1.0 and 

𝑏𝜂 = 0.0001 [24]. Values of 𝑎𝑦 = 5.0 and 𝑏𝑦 = 0.05 are chosen to specify that the observation error is 

expected to be an order of magnitude smaller than the model output standard deviation.  

Bayesian inference may be undertaken to sample from the posterior distribution of the uncertain 

quantities. Sampling using the full-field data, 𝒚 and 𝜼, is not tractable as each likelihood evaluation of 

the model specified by Eq. (8-9) requires the solution of 𝑚𝑛𝜂 + 𝑛𝑦 (≈ 6 × 106) equations. An equivalent 

expression for the posterior is given by [14]:  

𝜋(�̂�, 𝝀𝑤 , 𝝆, 𝜆𝜂 , 𝜆𝑦|𝒚, 𝜼) ∝ 𝐿(�̂�|�̂�, 𝝀𝑤 , 𝝆, 𝜆𝜂 , 𝜆𝑦)𝜋(�̂�)𝜋(𝝀𝑤)𝜋(𝝆)𝜋(𝜆𝜂
′ )𝜋(𝜆𝑦

′ ) (10) 

where π(∙) is a prior distribution, and the likelihood, 𝐿(�̂�| ∙), is expressed as a function of vector, �̂� =

((𝑲𝑦
𝑇𝑲𝑦)

−1
𝑲𝑦

𝑇𝒚; (𝑲𝑇𝑲)−1𝑲𝑇𝜼), the Ordinary Least Squares solution of Eq. (8). Each likelihood 

evaluation requires the solution of 𝑝(𝑚 + 1) equations (204 in this study). The prior for �̂� is given by 

�̂�~𝒩 (𝟎, 𝜮𝑧 + [
(𝜆𝑦𝑲𝑦

𝑇𝑲𝑦)
−1

𝟎

𝟎 (𝜆𝜂𝑲𝑇𝑲)
−1]) (11) 

and 𝜆𝜂 and 𝜆𝑦 are modified to 𝜆𝜂
′  and 𝜆𝑦

′ , with priors Γ(𝑎𝜂
′ , 𝑏𝜂

′ ) and Γ(𝑎𝑦
′ , 𝑏𝑦

′ ) respectively, where 

𝑎𝜂
′ = 𝑎𝜂 + 𝑚(𝑛𝜂 − 𝑝) 2 ⁄ (12)

𝑎𝑦
′ = 𝑎𝑦 + (𝑛𝑦 − 𝑝) 2⁄  (13)

𝑏𝜂
′ = 𝑏𝜂 + 𝜼𝑇(𝑰 − 𝑲(𝑲𝑇𝑲)−1𝑲𝑇)𝜼 2⁄  (14)

𝑏𝑦
′ = 𝑏𝑦 + 𝒚𝑇 (𝑰 − 𝑲𝑦(𝑲𝑦

𝑇𝑲𝑦)
−1

𝑲𝑦
𝑇) 𝒚 2⁄ (15)

 

Sampling from the posterior distribution described by Eq. (10) is undertaken via Hamiltonian Monte 

Carlo (HMC), using the No-U-Turn Sampler (NUTS) implemented in probabilistic programming 

language Stan [25]. It was found that modifying the prior on 𝜆𝑦, as described in Eqs. (13) and (15), 

resulted in a very strong restriction on sampling causing convergence problems. To overcome this 

problem, a less restrictive prior model was selected which directly uses 𝑎𝑦 and 𝑏𝑦 in place of 𝑎𝑦
′  and 

𝑏𝑦
′ . The method was further simplified by finding a Maximum A Posteriori (MAP) estimate for emulator 

hyperparameters 𝝆, 𝝀𝑤  and 𝜆𝜂  by maximising the marginal posterior of (𝑲𝑇𝑲)−1𝑲𝑇𝜼, fixing these 

parameters to their optimised values, then sampling from the posterior in the remaining parameters.  

 

5.4 Making calibrated predictions 

Predictions of the displacement can be made using the calibrated model by sampling from the 

underlying Gaussian process, parametrised by the samples of the posterior distribution. Standard 

conditional Gaussian identities [4] are used to state the distribution of a new predictive sample of the 

reduced-dimensional output 𝒘∗(�̂�) = (𝑤1
∗(�̂�), … , 𝑤𝑝

∗(�̂�))  at the sampled “best” setting of the 

calibration parameters �̂�,  conditional upon the training data �̂�. This distribution is given by 

𝒘∗(�̂�)|�̂�~𝒩(𝝁𝑤∗ , 𝜮𝑤∗) (16)

where, 𝝁𝑤∗ = 𝜮�̂�,𝑤∗
𝑇 𝜮�̂�

−1�̂�,  and 𝜮𝑤∗ =  𝜮𝑢 − 𝜮�̂�,𝑤∗
𝑇 𝜮�̂�

−1𝜮�̂�,𝑤∗ (17)
 

where 𝜮�̂�,𝑤∗ = [𝜮𝑢; 𝜮𝑢,𝑤
𝑇 ] and all other terms are as defined previously. The predictions are transformed 

into displacements using the basis functions, 𝜼∗(�̂�) = ∑ 𝒌𝑖𝑤𝑖
∗(�̂�)

𝑝
𝑖=1 . Note that the observation error is 

not included as the aim is to sample from the “true” response without experimental noise.  
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6 RESULTS AND DISCUSSION 

The described method has been used to draw a set of 6000 posterior samples. A comparison of the 

marginal posterior PDFs of the calibration parameters against their prior distributions is shown in Figure 

7. Scatter plots illustrating the prior and posterior correlation are shown in Figure 8. 

 

 

 
 

Figure 7: Comparison of Prior and Posterior distribution of the calibrated model inputs. 

 

 

 
 

Figure 8: Scatter plots across the set of prior and posterior calibration input samples, illustrating 

posterior correlations. 

 

 

The marginal distributions in Figure 7 show that uncertainty has been reduced in each calibration 

parameter, as each posterior distribution is narrower than the corresponding prior. This is the intended 

outcome of Bayesian inference, to reduce uncertainty by observing new data. Boundary condition spring 

stiffness, K, has most of the posterior mass at values with log(K) > 13. Comparison with Figure 5 

indicates that these values correspond mostly to a fully clamped boundary, with some allowance given 

to the possibility of imperfect clamping. The posterior distributions in E11 and the ply thickness are 

shifted to lower values, with modes 110.1 GPa and 0.188 mm respectively. The spar therefore likely had 

lower stiffness than would be predicted using nominal input values, and the uncalibrated model would 

likely under-predict the longitudinal displacement. A substantial reduction in uncertainty is also evident 

in Figure 8, wherein a strong negative correlation is observed between E11 and tply. This posterior 

correlation arises as the model outputs similar displacement for a lower thickness and a higher modulus, 

as a higher thickness and lower modulus, thus both possibilities could explain the experimental data. 
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Substituting the posterior samples through the predictive model described in Section 5.4 results in a 

set of sample longitudinal displacement predictions, each a possible “true” displacement field given the 

remaining uncertainty. This uncertainty can be integrated out of the formulation to produce a calibrated 

prediction by taking the mean across all sample predictions. The mean calibrated prediction and standard 

deviation, taken as a metric of uncertainty in the prediction, are shown in Figure 9. Calibrated predictions 

can be obtained at the coordinates of the DIC measurements using the interpolated basis vectors 𝒌𝑦𝑖, 

and point-by-point comparisons made with the DIC data. For example, the absolute value of the residual 

[26] given by subtracting the DIC displacement from calibrated predictions, |𝜼𝑦
∗ − 𝒚|, may highlight 

regions of disparity between the two datasets. This metric is illustrated for the uncalibrated model with 

nominal input values, and calibrated model in Figure 10. 

 

 

 
 

Figure 9: Calibrated predictive model of longitudinal displacement: a) mean prediction, and b) 

standard deviation of predictions.  

 

 

 
 

Figure 10: Plots of the absolute residual given by the difference between model and DIC data using: a) 

the uncalibrated model, and b) the calibrated model 

 

 

The calibrated displacement in Figure 9a) resembles that of spar clamped at both ends, with a peak 

longitudinal displacement of −9.7×10-2 mm at the loaded end, resulting in an increase in magnitude from 

the nominal, uncalibrated value of −8.9×10-2 mm (see Figure 2) to match the higher experimental 

displacements (see Figure 4). This increase in displacement is achieved via the average reduction in 

axial stiffness and slight relaxation of the clamped boundary condition described above. The standard 

deviation in Figure 9b) shows a higher uncertainty in longitudinal displacement predictions at the loaded 

end than at the fixed end, which is an intuitive outcome. There is higher uncertainty in predictions at the 

tips of the flanges and in the webs relative to the centroid, due to the possibility of rotation arising at the 

ends in the test, but not being captured by the boundary conditions of the calibrated model.  

Figure 10 shows lower residuals across more data points in the calibrated model compared with the 

nominal output, particularly near the loaded end of the web. The improvement is modest at this low 

applied load, although the extent of the shift in displacement is not fully evident due to the use of an 
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absolute error term and a change in sign of the residual across many points. Residuals relative to the 

calibrated model give a truer picture of discrepancies between the model and experiment, as they are 

less affected by input uncertainty. The highest disparities occur at the tip of the flange at both ends of 

the spar, possibly indicating that the torsional spring model inadequately captures the boundary 

condition. Fixing the x coordinates of the springs is one limitation of the chosen approach, and allowing 

the pivot location to vary as an uncertain input may improve the match with the data. Uncertainty in the 

zero experimental displacement, set as described in Section 4, also creates uncertainty in the x coordinate 

about which the spar can pivot. Large discrepancies are present towards the edge of the field of view in 

one ramp and in the furthest corner of the web, which are potentially due to observation error. 

 

7 CONCLUSIONS 

Bayesian model calibration has been applied to a Finite Element model of a C-spar loaded in 

compression, using DIC data. A calibration method has been implemented to overcome the challenges 

of using high-dimensional simulation and experimental data, while also being suitable for use with 

computationally expensive models. The procedure has been demonstrated in a simple case study using 

longitudinal displacement measurements around a corner of the spar, at fixed load of 10kN, to calibrate 

a model with uncertain longitudinal modulus, ply thickness, and boundary conditions. Uncertainty in 

each parameter was reduced following calibration, with posterior distributions shifted towards values 

resulting in lower axial stiffness and a slightly relaxed clamped boundary condition. A modest reduction 

was achieved in the absolute value of the residuals between the data and calibrated prediction. 

Future work will aim to extend this method to a full test history across multiple fields of view. 

Calibration will be extended to all displacement components u, v and w, considering a broader range of 

uncertainties. Incorporating nonlinear behaviour and failure will warrant more complex models with a 

larger number of inputs, thus yielding further opportunities for improved learning.  
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