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ABSTRACT 

In the field of composite material engineering, accurately predicting mechanical behaviour is 

essential for tailoring performance in various applications. This paper presents a novel approach to 

homogenize composite materials for accurate prediction of their mechanical performance. The proposed 

method focuses on non-periodic representative volume elements (RVEs), which present challenges in 

applying classic periodic boundary conditions. This is due to the varying properties of the elements at 

the boundary and irregular meshing. To address this issue, we introduce an envelope surrounding the 

RVE, onto which periodic conditions are applied. An iterative process is required to compute the 

stiffness tensor of the envelope until a convergence is observed. The stiffness tensor is computed using 

the perturbation homogenization technique implemented into the Finite Element Analysis (FEA).. The 

method is validated on non-periodic arrangements of spherical inclusions embedded within a matrix. 

The prediction of the elastic properties of Ultra-High Molecular Weight Polyethylene (UHMWPE) 

mixed into a polypropylene matrix is conducted for a volume fraction up to 35%. 

 

1 INTRODUCTION 

Composite materials blending discrete reinforcements into a continuous polymer matrix, have gained 

significant attention due to their potential to achieve tailored mechanical performance for various 

applications  [1,2]. These materials can be isotropic or anisotropic, depending on the reinforcement used, 

such as fibres or particles, and their arrangement. Moreover, other factors such as the shape of the 

reinforcement, proportion of the constituents, quality of the interface, production process are other 

examples of many more that can influence the composite material's properties. In this context, 

understanding the microstructural behaviour of composite materials is crucial, as it plays a dominant 

role in determining their overall performance. 

A common approach to investigating the mechanical properties of composites is through numerical 

simulations of a Representative Volume Element (RVE) [3,4], that is, a microscopic sample that exhibits 

the same mechanical properties as the entire composite structure. Discretization at the microscale level 

is therefore often necessary for complex structures, and multi-scale analysis is employed for determining 

a variety of properties. Tensile strength is one of the primary features analysed through homogenization. 

Mean field homogenization [5–7] relies on basic mathematical relationships and geometrical 

assumptions, while full field homogenization [8–11] depends on a clear definition of the microstructure 

and characteristics of the interactions at the boundary of phases. 

Integrating homogenization into the Finite Element (FE) framework allows for multi-scale analysis 

and characterization of macroscopic behaviour. The convergence on the homogenized properties was 

demonstrated to be faster using periodic boundary conditions along with RVE size [12].  However, 

applying the RVE method to non-periodic structures poses challenges, as it becomes difficult to apply 

classic boundary conditions on nodes belonging on elements with varying properties and when the mesh 

is not periodic [13–15]. A few existing studies [12,16] employ a technique, herein referred to as 

Envelope Enrichment (EE). A dummy material is created around the original RVE to create a support 

domain suitable for the application of PBCs. Through an iterative process, the homogenized properties 

of the enveloped RVE are assigned to the envelope until convergence of those properties is observed.  
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This paper aims to compare the results of the EE method and those obtained from other empirical 

micromechanics models Voigt, Reuss, and Halpin–Tsai, and Asymptotic Homogenization (AH) from 

another study [17]. The EE method will first be described, and its implementation will be specified. A 

work case will be presented with spherical particles of Ultra High Molecular Weight Polyethylene 

(UHMWPE) dispersed into Polypropylene (PP). The results are then compared.  

 

 

 
 

Figure 1: Illustration of the method implementation for the homogenization 

 

 

2 DESCRIPTION OF THE METHOD 

Figure 1 shows the complete process to compute the homogenized properties of a non-periodic 

composite model using the EE method. The following sections present each step of the method. 

2.1 Model creation 

Figure 2 illustrates the model creation starting from the geometry of the inclusions. A classic RVE 

is added to create the host region where the inclusions reside. The RVE is meshed, and the properties of 

the host matrix are assigned. The inclusions are meshed with inclusions’ properties. The inclusion mesh 

is overlaid to the RVE mesh. The embedding technique is employed to link the inclusion to the RVE 

host matrix, assuming a perfect mechanical interaction between the inclusions and the hots matrix. More 



23rd International Conference on Composite Materials 

Belfast, 1- 6th August 2023 

information on the embedding technique can be found in [18,19]. The envelope is added around the 

RVE with a periodicity constraint on the outside boundary. A material with arbitrary properties is 

applied to the envelope. The final model is meshed to be studied through computational simulation using 

FEA. This ensure the presence of a periodic mesh onto which PBC can be applied. 

 

 
Figure 2: Illustration of the model creation: (a) Input model of the inclusions geometry , (b)Creation of 

a RVE, (c) Creation of the envelop of material with arbitrary properties. (d) Illustration of a the final 

enveloped model with a corner of the envelop being cut. 

 

2.2 Homogenization 

The strategy implemented consists of formulating the localization problems associated with PBCs 

by introducing additional reference points supporting the components of the macroscopic deformations. 

The specific boundary conditions are imposed via linear relations between the degrees of freedom of the 

contour nodes and these additional DOFs applied on three arbitrary reference points. It can then be 

shown that the nodal forces associated with the DOFs supporting the components of the mean strains 

are equal to the components of the mean stress in the total volume. 

Given the presence of heterogeneities in a finitely deformable heterogeneous macro-structure ℳ, the 

solution of the Boundary Value Problem (BVP) is highly oscillatory. Solving such problems appears 

very challenging in its original form detailed in [20] and requires replacing ℳ with a corresponding 

homogeneous replica ℳ ∗.When dealing with RVEs, the work criterion originally expressed by [21] 

leads to the definition of the macroscopic volume average of the controlled deformation gradient 𝐹 and 

the 1st Piola–Kirchhoff stress tensor 𝑃 They are expressed as the volume average of their microscopic 

counterpart over the total volume 𝑉0 of the RVE: 
 

𝐹 = ⟨𝑓⟩ =
1

|𝑉0|
∗ ∫ 𝑓

𝑉0

𝑑𝑉,  𝑃 = ⟨𝑝⟩ =
1

|𝑉0|
∗ ∫ 𝑝

𝑉0

𝑑𝑉 

 

(1) 

For better clarity the macroscopic (resp. microscopic) quantities are expressed with UPPERCASE 

(resp. lowercase) letter and symbols. The work criterion is satisfied when periodic boundary conditions 

are applied such as: 
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𝑥 − 𝑥0 = 𝐹(𝑋 − 𝑋0) 
(2) 

where 𝑥 and 𝑋 denote the position vectors for the current and reference configurations. To do so in 

the FEM framework, reference points are used to support the displacement representing the Cartesian 

components of the macroscopic displacement gradient 𝑈 such that on the microscopic scale:  
 

𝑢𝑗

𝑛𝑖
+

− 𝑢𝑗

𝑛𝑖
−

= λ𝑗∇𝑈𝑗𝑖   𝑖, 𝑗 ∈ {1,2,3} (3) 

 

with λ𝑗 the dimensions of the cuboid 

 

Those conditions are introduced onto three reference points supporting the macroscopic displacement 

gradient. This is done by imposing a displacement on those reference points 𝑅𝑝∈{1,2,3} which gives: 
 

𝑣𝑝 = ∇𝑈𝑗𝑝 
(4) 

The anti-symmetry of the boundary tractions is automatically satisfied such that the nodal forces on 

oppositely located nodes are of equal magnitude and opposite sign when these homogeneous constraints 

are enforced through Lagrange multipliers, which correspond, aside from sign to the nodal forces of the 

boundary nodes. The weak form of the boundary value problem on the equivalent homogeneous 

microstructure ℳ∗ can be expressed in the form: 
 

∫ 𝑃
𝑉0

⋅ δ𝐹𝑑𝑉 = ∑ 𝑅𝑝δ𝑣𝑘

3

𝑘,𝑝=1

 

(5) 

 

which gives that the reaction forces 𝑅𝑝  measured on the reference points correspond to the 

macroscopic Piola-Kirchhoff stresses over the volume 𝑉0. 

2.3 Implementation of EE in FEA 

To overcome the challenge of non-periodic mesh for complex materials, an RVE encapsulated into 

an envelope is created and meshed to be studied with FEA. All the meshing work is done with the python 

solver from GMSH [22], an open-source three-dimensional finite element grid generator. The actual 

method developed can deal with any existing microstructure mesh file in the input format used by 

Abaqus. The envelope is generated around the RVE with a periodicity of the mesh applied on the outside 

boundary of the envelope thanks to an affine transformation matrix. This, coupled to a transfinite 

constraint explicitly specifying the location of the nodes on each edge ensures the presence of a pair of 

nodes facing each other on every parallel face of the envelope. This method allows the continuity of the 

mesh between the RVE and the envelope in such a way that each node on the contact surfaces is shared 

between both entities. The change of mesh density is therefore not problematic as there is no 

discontinuity generated, while still maintaining the necessary periodic constraints.  

To conduct the homogenization process, the Homtools [23] plugin implemented into Abaqus/CAE 

is employed. Only linear problems are considered, which is true for RVE simulation within the elastic 

domain of its components. Hence, the principle behind the Abaqus framework is based on the Jaumann 

rate of the Kirchhoff stress tensor. Thanks to Homtools, equation (4) is applied automatically by creating 

a set of Multi-point Constraint (MPC) in Abaqus, linking each node pair (𝑛𝑖−𝑛𝑖+) on a periodic mesh.  

Abaqus is used to define the model and run the different simulations. The original source code from 

Homtools is modified to be integrated into the actual workflow for a streamlined process. For each step 

of the enrichment process, 6 monotonic loading cases are calculated into different jobs. As the second 

Piola-Kirchhoff stress tensor is linked to the deformation tensor: 
 

∆𝑃 =  𝐶𝑖𝑗𝑘𝑙 ∶  ∆𝐹 
(6) 

Following equation (5) and assuming an anisotropic behaviour of the microstructure, the reaction 

forces are evaluated on the 3 reference points and the stiffness tensor 𝐶𝑖𝑗𝑘𝑙 is calculated at each step. 
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Using the Voigt notation, the problem can be written as follows: 

  

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36

𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46

𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56

𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66]
 
 
 
 
 

 ∗

[
 
 
 
 
 
1
0

0

0

0
0]
 
 
 
 
 

=

[
 
 
 
 
 
∆𝑃1

∆𝑃2

∆𝑃3

∆𝑃4

∆𝑃5

∆𝑃6]
 
 
 
 
 

  

(6) 

 

This depicts the calculation of the first column. The other columns can be calculated in an analogous 

manner and in parallel for more efficiency. The computed stiffness tensor is used to update the envelop 

properties. This process is repeated until a convergence of the terms is observed. 

 

 

 
Figure 3: Illustration of the creation of the non-periodic RVE from a 

periodic RVE of randomly generated spheres 

 

 

3 WORK-CASE 

Figure 3 shows the periodic and the non-periodic models. The spherical inclusions have been 

generated with Mote3D [24], a toolbox creating randomly positioned spherical particles. Those 

inclusions are within a periodical cubical computational domain. This is done through an iterative 

process which inherently limits the total Volume Fraction (VF) which is comprised in the range 

[0.18;0.35] for the current study. The particle radius is set as a constant and equal to r = 10μm. No 

interpenetration is permitted between each particle inside the RVE with a width WP = 50μm. The 

number of inclusions is modified to adjust the VF parameter. To evaluate the developed method on non-

periodic medium, the cubical domain was cropped to a smaller width 𝑊𝑛𝑝 =  38μm <  𝑊𝑝  −  r/2. 

This way the periodicity property was annihilated. The effective properties of the periodic models were 

calculated directly with the Homtools plugin whereas the EE method was used for the non-periodic 

counterpart.  

 

 

Properties Polypropylene UHMWPE 

Elastic Modulus (GPA) 1.325 25.0 

Shear Modulus (GPA) 0.432 10.4 

Poisson’s Ratio 0.43 0.20 

 

Table 1: Properties of Polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWP) 

 

 

Figure 4 illustrate the meshed model of an enveloped RVE with embedded spherical inclusions. The 

slight offset between the matrix and the envelope material allows the creation of PBC constraints on a 

mesh with an imposed periodicity and matching nodes on opposite sides with uniform properties. The 
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material properties of each section, matrix, inclusions, and envelope are assigned accordingly with the 

values detailed in Table 1. 

 

               
 

Figure 4: Illustration of a meshed enveloped RVE, with embedded spherical inclusions  

 

 

4 RESULTS AND DISCUSSION 

Figures 4 shows the evolution of the elastic modulus. The Voigt and Reuss models are known to give 

an upper and lower bound of the elastic modulus. Halpin Tsai considers the shape and arrangement of 

the particles which gives a better result in this case. Empirical and semi empirical micromechanics 

models rely heavily on the constituent’s volume fraction. Therefore, Voigt, Reuss and Halpin Tsai all 

demonstrate a linear evolution according to VF for the elastic and shear modulus. Because UHMWPE 

has a higher tensile modulus than PP, the homogenized modulus increases with increasing VF. The AH 

results are extracted from another study [11], conducted on conformal mesh with the Finite Element 

Method (FEM) and follow closely the results obtained with the Halpin Tsai model. Periodic and non-

periodic microstructures, homogenized with Homtools and the perturbation technique, shows higher 

values while being below the Voigt model. 

 

 

 
 

Figure 5: Elastic modulus according to the volume fraction predicted by various models: Voigt, Reuss, 

Halpin–Tsai, AH, periodic and non-periodic FE method. 

UHMWPE 

PP 

Envelope 

(from [14]) 
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Figure 6 depicts the shear modulus and Poisson’s ration for the different models. Similar results are 

observed for the shear modulus and the modulus of elasticity. In the case of the Poisson ratio, the 

periodic and non-periodic results are closer to the expected value of the semi empirical models. The 

values for a VF over 25% are in good accordance with the other empirical models which was not the 

case for the AH. However, below 25% of VF, the EE method lies outside the Voigt and Reuss bounds. 

The underlying causative factors for the observed result remain ambiguous, despite the accurate 

measurements obtained for both the elastic and shear moduli. A comprehensive investigation into the 

off-diagonal components of the stiffness tensor may provide insights for elucidating this phenomenon. 

 

 

 
 

 
 

Figure 6: Shear modulus (a) and Poisson ratio (b) according to the volume fraction predicted by 

various models: Voigt, Reuss, Halpin–Tsai, AH, periodic and non-periodic FE method. 

 

(from [14]) 

(from [14]) 

(b) 

(a) 
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5 CONCLUSIONS 

The present study demonstrated the EE method for predicting the effective properties of a composite 

material with spherical inclusions inside a polymer matrix. Spherical inclusions of UHMWPE are 

embedded in a polypropylene matrix and the resulting material was assumed to have an isotropic 

behaviour at the macroscale. The EE method demonstrates a convergence of the elastic properties and 

are close to the classical method. Those results where compared to analytical models, Voigt, Reuss and 

Halpin Tsai along with the results of another study employing the RVE within the finite element 

framework and AH. The results observed with the EE method show a good consistency with the original 

model while having a smaller mesh domain to work with. The EE results are found within the Voigt and 

Reuss bound for the shear and elastic modulus while being a little higher than the one from the Halpin 

Tsai model. Future work focusing on real life testing is needed to determine the accuracy of the results 

and whether the method can define a high bound more relevant than the one provided by the Voigt 

model. A review study of the envelope parameters such as thickness and mesh density should also 

determine the right setup to obtain the stiffness tensor of a given microstructure.  
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