

EFFICIENT NONLINEAR MULTISCALE SPECTRAL GFEM APPLIED TO COMPOSITE AEROSPACE STRUCTURES

J. Bénézech¹, L. Seelinger², A. Reinarz³, T.J. Dodwell^{4,5}, R. Butler¹ and R. Scheichl²

- 1. Material & Structure Research Centre, University of Bath, Bath, UK,
- 2. Interdisciplinary Center for Scientific Computing and Institute for Applied Mathematics, Heidelberg University, Heidelberg, Germany,
- 3. Department of Computer Science, Durham University, Durham, UK,
- 4. Institute of Data Science and AI, University of Exeter, Exeter, UK,
- 5. digiLab, Exeter, UK.

Composite materials for aerospace applications

Composite materials for aerospace applications

3

CERTIFICATION FOR DESIGN: RESHAPING THE TESTING PYRAMID

Design a certification process adapted to composites for aerospace applications

Objectives:

• Method designed for UQ – Efficient defect assessment

- Multi-scale problem
 - Resolve stress distribution at the defect level
 - Structural effect
 - Nonlinear effect
- Uncertainty quantification (UQ) problem
 - Sub-component and upper levels
 - Virtual testing

I. MS-GFEM for HPC scale problem & Offline – Online method

II. Non-linear MS-GFEM

III. UM-bridge

http://dune-project.org/

http://dune-project.org/

MS-GFEM:

Multi-scale Spectral Generalized Finite Element Method

Ensure that the eigenvectors are solutions of the homogeneous PDE on interior Degrees of Freedom (DoF)

[1] Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., & Scheichl, R. (2014). Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numerische Mathematik, 126(4), 741-770.

[2] Ma, C., & Scheichl, R. (2021). Error estimates for fully discrete generalized FEMs with locally optimal spectral approximations. arXiv preprint arXiv:2107.09988.

Eigen vector: 0

http://dune-project.org/

8

Offline / Online method:

I. MS-GFEM for HPC scale problem & Offline – Online method

II. Non-linear MS-GFEM

III. UM-bridge

http://dune-project.org/

Composite problem

Implement of geometric nonlinearities in DUNE

Large thin structure – Buckling

Cho, H., Shin, S., & Yoh, J. J. (2017). Geometrically nonlinear quadratic solid/solid-shell element based on consistent corotational approach for structural analysis under prescribed motion. International Journal for Numerical Methods in Engineering, 112(5), 434-458.

Newton Raphson MS-GFEM scheme

Load step loop:	$F_{\Omega_{i}^{*}ext}^{*t+\delta t} = F_{\Omega_{i}^{*}ext}^{t} + \Delta F_{\Omega_{i}^{*}ext}$
update	$K_{\Omega_{i}^{*}}^{T}{}^{t+\delta t}(u)$, ${F_{\Omega_{i}^{*}}}_{int}^{t+\delta t}$
Construct coarse space	$\begin{split} V_H &:= \operatorname{span} \left\{ R_j^{\top} \Xi_j(\varphi_h^{j,k} _{\Omega_j}) : k = 1, \dots, m_j, j = 1, \dots, N \right\} \\ K_H^{T^{t+\delta t}}(u) \end{split}$
While	$ F_{\Omega_{i}^{*}}{}_{ext}^{t+\delta t} - F_{\Omega_{i}^{*}}{}_{int}^{t+\delta t} < \epsilon \qquad \Delta U_{H}^{t+\delta t} < \epsilon$
	Solve: Local particular solution: $K_{\Omega_i^*}^{T} {}^{t+\delta t} \Delta u_{\Omega_i^*}^{t+\delta t} = F_{\Omega_i^*} {}^{t+\delta t}_{ext} - F_{\Omega_i^*} {}^{t+\delta t}_{int} $
	Coarse space solution: $K_H^{T^{t+\delta t}} \Delta U_H^{t+\delta t} = R_H$
	$U_{H}^{t+\delta t} = U_{H}^{t} + \Delta U_{H}^{t+\delta t}$
Project &	update: $u_{\Omega_i^*}^{t+\delta t} \longrightarrow K_{\Omega_i^*}^{T t+\delta t}(u)$, $F_{\Omega_i^* int}^{t+\delta t}$
update coarse	system: V_H , $K_H^{T^{t+\delta t}}(u)$

Improvements: Newton Raphson MS-GFEM scheme

Load step loop:	$F_{\Omega_{i}^{*}}{}_{ext}^{t+\delta t} = F_{\Omega_{i}^{*}}{}_{ext}^{t} + \Delta F_{\Omega_{i}^{*}}{}_{ext}$
update	${K_{\Omega_i^*}^T}^{t+\delta t}(u)$, ${F_{\Omega_i^*}}^{t+\delta t}_{int}$
Construct coarse space	$V_H := \operatorname{span} \{ R_j^\top \Xi_j(\varphi_h^{j,k} _{\Omega_j}) : k = 1, \dots, m_j, j = 1, \dots, N \}$ $K_H^{T^{t+\delta t}}(u)$
While	$ F_{\Omega_{i\ ext}^{*}}^{t+\delta t} - F_{\Omega_{i\ int}^{*}}^{t+\delta t} < \epsilon \qquad \Delta U_{H}^{t+\delta t} < \epsilon$
	Solve: Local particular solution: $K_{\Omega_i^*}^{T}{}^{t+\delta t}\Delta u_{\Omega_i^*}^{t+\delta t} = F_{\Omega_i^*}{}^{t+\delta t}_{ext} - F_{\Omega_i^*}{}^{t+\delta t}_{int}$
	Coarse space solution: $K_H^{T^{t+\delta t}} \Delta U_H^{t+\delta t} = R_H$
	$U_{H}^{t+\delta t} = U_{H}^{t} + \Delta U_{H}^{t+\delta t}$
Project &	update: $u_{\Omega_i^*}^{t+\delta t} \longrightarrow K_{\Omega_i^*}^{T t+\delta t}(u)$, $F_{\Omega_i^* int}^{t+\delta t}$
update coarse	system: V_H , $K_H^{Tt+\delta t}(u)$

Improvements: Newton Raphson MS-GFEM scheme

- Reducing load increment
- Improving coarse space
- More local iterations
- Allow re-computation of coarse space if needed

UNIVERSITY OF

Improvements: Newton Raphson MS-GFEM scheme

Load step loop:	$F_{\Omega_{i}^{*}}{}_{ext}^{t+\delta t} = F_{\Omega_{i}^{*}}{}_{ext}^{t} + \Delta F_{\Omega_{i}^{*}}{}_{ext}$	
update	$K_{\Omega_i^*}^{T}{}^{t+\delta t}(u)$, $F_{\Omega_i^*}{}^{t+\delta t}_{int}$	
Construct coarse space	$\begin{split} V_H &:= \operatorname{span}\{{R_j}^\top \Xi_j(\varphi_h^{j,k} _{\Omega_j}) : k = 1, \dots, m_j, j = 1, \dots, N\}\\ K_H^{T^{t+\delta t}}(u) \end{split}$	
While	$ F_{\Omega_{i}^{*}}{}^{t+\delta t}_{ext} - F_{\Omega_{i}^{*}}{}^{t+\delta t}_{int} < \epsilon \qquad \Delta U_{H}^{t+\delta t} < \epsilon$	
	Solve: Local particular solution: $K_{\Omega_i^*}^{T} {}^{t+\delta t} \Delta u_{\Omega_i^*}^{t+\delta t} = F_{\Omega_i^*} {}^{t+\delta t}_{ext} - F_{\Omega_i^*} {}^{t+\delta t}_{int} \blacktriangleleft$	
	Coarse space solution: $K_H^{T^{t+\delta t}} \Delta U_H^{t+\delta t} = R_H$	
	$U_H^{t+\delta t} = U_H^t + \Delta U_H^{t+\delta t}$	
Project & u	update: $u_{\Omega_i^*}^{t+\delta t} \longrightarrow K_{\Omega_i^*}^{T^{t+\delta t}}(u)$, $F_{\Omega_i^* int}^{t+\delta t}$	
Ensure convergence if: $ \Delta U_H^t $	$ +\delta t _{i+1} > \Delta U_H^{t+\delta t} _i$ do update coarse system: V_H , $K_H^{Tt+\delta t}(u)$	

CRIES

DISPLACEMENT Magnitude 0.0e+00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1.6e+01

CRIT_COMP_MAT 0.0e+00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5e+00

Scalability!

I. MS-GFEM for HPC scale problem & Offline – Online method

II. Non-linear MS-GFEM

III. UM-bridge

http://dune-project.org/

UM-bridge:

https://um-bridge-benchmarks.readthedocs.io/en/docs/index.html

force (kN)

Quasi Monte Carlo: Start at a load increment **Delamination defect**

UNIVERSITY OF

ETER

 -45°

 45°

 0°

0°

UNIVERSITY OF

Conclusion:

• Parallelised and optimised nonlinear method with a great scalability

Perspectives:

- Associate Nonlinear MS-GFEM with Offline/Online method
- Singular Value Decomposition

http://dune-project.org/

Thanks for your attention

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

