EFFECTS OF CARBON-FIBRE & COPPER Z-PINS ON THE FAULT CURRENT RESPONSE OF COMPOSITE LAMINATES

Presenter:
Mudan Chen

Co-authors:
Dr. Bing Zhang
Mr. Zhaobo Zhang
Prof. Giuliano Allegri
Prof. Xibo Yuan
Prof. Stephen R. Hallett

bristol.ac.uk/composites
1. Introduction

Demands from the aircraft industry:

- Using electrical power in aircraft to reduce the greenhouse emission;
- Using carbon-fibre reinforced polymer (CFRP) composites to reduce the structural weight.

B787 Dreamliner:

- It uses more electricity, instead of pneumatics, to power airplane systems such as hydraulics, engine start and wing ice protection [1].
- Meanwhile, it has more than 50% of its structure built of CFRP composites, reducing around 20% weight.

1. Introduction

Electrical current conduction through the CFRP:

- Localised Joule heating that results in matrix degradation;
- CFRP structure and electrical power system are kept separate via bulky cable harnesses and heavy raceways.
- Integrating the electrical power system with CFRP structures is highly desired.
- But the low electrical fault current inside CFRP is difficult to detect with traditional grounding topology.

Thus, it is crucial to:

- Enhance CFRP’s electrical conductivity;
- Have a thorough understanding of its behaviour under fault currents before and after the enhancement.

Objective:

- Investigate the electrical and consequential thermal behaviour of Z-pinned laminates under in-plane and through-thickness fault currents for the first time.

Path of the fault current through a CFRP structure

- Location of chafed insulation of cable
- ‘In-plane’ fault current
- ‘Through-thickness’ fault current
1. Introduction

Z-pinning is an effective through-thickness reinforcement technology, by inserting small rods through the thickness of composites.

It is the primary technique used in prepreg constructions.

In recent years, there has been growing interest in exploring the multifunctional capabilities of Z-pinned composites.

Two types of pins, i.e., copper and conventional carbon-fibre, were employed at two areal densities.

Five categories of samples were manufactured with a QI stacking sequence:

- Unpinned (UP)
- Copper low-density Z-pinned (COP-L)
- Copper high-density Z-pinned (COP-H)
- Carbon-fibre low-density Z-pinned (CAR-L)
- Carbon-fibre high-density Z-pinned (CAR-H)
2. Resistance measurement

Through-thickness direction

Current input locations varied on the top surface from position 1 to 9, whilst the output was kept constant at the bottom surface.

Results:

- The through-thickness resistance was reduced by two orders with Z-pins.
- The high-density Z-pinned samples have lower resistance than low-density ones.
- The resistance of copper Z-pinned samples is higher than carbon-fibre Z-pinned samples.
Current input locations varied on the top surface from position 1 to 9, whilst the output was kept constant at the **bottom** surface.

Results:

- The plot has a symmetric trend which is consistent with the distribution of top-surface electrodes. It implies that the current path of the top ply dominates the global result.
2. Resistance measurement

Experimental plot of the in-plane resistance

Current input location varied on the top surface from position 1 to 9, whilst the output was kept constant at the side.

Results:
- Z-pins also reduce the in-plane resistance, although the amount is not as much as the through-thickness direction.
- In terms of the pin material and areal density influence, the discipline is the same with through-thickness direction.
- The similar top layer dominated behaviour was observed.
- The resistances associated with positions 4, 7 and 8 of Z-pinned samples are much smaller than unpinned ones.
2. Resistance measurement

Why is the resistance of copper Z-pinned samples higher than that of carbon-fibre Z-pinned ones?

- The pin itself is **not** directly engaged in the current path.
- The fibre-to-fibre connections, instead of the pins, are the main current flow path for through-thickness conduction.
3. Fault current test

Fault current test set-up

Through-thickness

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>COP-L</th>
<th>COP-H</th>
<th>CAR-L</th>
<th>CAR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate temperature, °C</td>
<td>99.2</td>
<td>29.7</td>
<td>28.7</td>
<td>29.3</td>
<td>27.2</td>
</tr>
</tbody>
</table>

In-plane

<table>
<thead>
<tr>
<th></th>
<th>UP</th>
<th>COP-L</th>
<th>COP-H</th>
<th>CAR-L</th>
<th>CAR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate temperature, °C</td>
<td>99.1</td>
<td>56.8</td>
<td>44.9</td>
<td>53.8</td>
<td>41</td>
</tr>
</tbody>
</table>
3. Fault current test

Through-thickness direction result

Unpinned

Low-density copper Z-pinned

High-density copper Z-pinned
4. Conclusions

Summary:

• This work shows that there is a notable enhancement of the electrical conductivity of CFRP laminates with Z-pins inserted, especially in the through-thickness direction. The conductivity improvement reduces the temperature increase due to Joule heating under fault currents.

• Unlike other conductivity enhancements, such as metal meshes that have only one function and increase the laminate weight, the Z-pins also have a beneficial influence on the laminate’s through-thickness mechanical properties.

Future work:

• This study is limited to static small currents. In the future, exploring the behaviour of Z-pinned laminates under other scenarios would be of interest. Additionally, electrical models are preferred to help design and optimise Z-pinned laminates in their electrical applications, as experimental cost is high if a range of parameters are considered.

Acknowledgements:

This work was supported by the Engineering and Physical Sciences Research Council through the Centre for Doctoral Training in Advanced Composites for Innovation and Science (grant number EP/L016028/1).
Mudan Chen
mudan.chen@bristol.ac.uk
+44 07395624510
+86 13685269313

bristol.ac.uk/composites