DETECTING DEBONDED REGIONS THROUGH THE FACE SHEETS OF SANDWICH STRUCTURES USING MIRROR ASSISTED IMAGING TECHNIQUES

H. L. Emily Leung*, Janice M. Dulieu-Barton, and Ole T. Thomsen

*emily.leung@bristol.ac.uk

Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, UK

Engineering and Physical Sciences Research Council

CERTIFICATION FOR DESIGN: RESHAPING THE TESTING PYRAMID

University of Southampton

Introduction

Sandwich structures

- High bending stiffness and strength to weight ratio
- Face/core debonding occurs during:
 - Manufacture, and
 - In-service

Previous studies have shown that the combined use of FE analysis and full-field imaging techniques can

CERTIFICATION

- Identify the crack tip response at the face sheet/core interface, and
- Subsequent damage progression

Ciab

Aim & Objectives

To identify facesheet/core interface debond/delamination through the thin face sheets of sandwich structures by:

- Combining the full field imaging techniques of Digital Image Correlation (DIC) and Thermoelastic Stress Analysis (TSA) to detect and characterize debond growth
- Using a mirror-assisted imaging methodology developed as part of the PhD project to view inaccessible regions and extend the field of view of cameras

Debond at the facesheet/core interface

Thermoelastic stress analysis (TSA)

- TSA utilizes an IR camera to obtain a series of images from a component under a cyclic load
- The thermoelastic response, ΔT , is obtained from the image series
- ΔT is related to the stresses by $\frac{\Delta T}{T_0} = \frac{(\alpha_1 \Delta \sigma_1 + \alpha_2 \Delta \sigma_2)}{\rho C_p}$
- Assumption is no heat transfer takes place
- Carbon fibre is highly conductive, so heat transfer occurs at low loading frequency
- Explore using non-adiabatic response to 'see' through the face sheet

lpha is the coefficient of thermal expansion

 T_0 is the surface temperature

ho is the density

 \mathcal{C}_p is the specific heat at constant pressure

 $\Delta\sigma$ is the change in stress

CERTIFICATION FOR DESIGN: RESHAPING TH TESTING PYRAN

Combining TSA and DIC

- White speckle patterns on a black background are applied on the surface of the face sheet
- DIC tracks the movement of the speckles and provides the deformations
- ε_x , ε_x and ε_{xy} is obtained from the surface deformations
- Converted to the stress components using E_1 , E_2 , G_{12} , v_{xy} (known elastic constants)
- $\frac{\Delta T}{T_0}$ can be derived by knowing α , ρ , C_p and the surface emissivity
- Calculated $\frac{\Delta T}{T_0}$ is independent of heat transfer

Engineering and Physical Sciences

Specimen and loading configuration 0.4 mm CFRP (IM7/8552) 50 mm 20 mm PVC Divinycell H100 Debonded region, a 80 mm P/2P/2 260 mm Cross sectional view Front view **Specimen configuration** Face sheet lay-up: (0)3

Core density : 100 kg/m³

Debonded region, a: 10 mm, 20 mm, 30 mm

Loading details for TSA

Loading (N)		a (mm)		
Mean	Amplitude	10	20	30
-400	± 300	٧	٧	V
-450	± 350	V	\checkmark	\checkmark
-500	± 400	V	V	V
-550	± 450	٧	٧	Х

Loading Frequency (Hz)						
1.1	2.1	3.1	4.1	6.1	10.1	12.1
√ (with DIC)	V	V	V	V	V	V

CERTIFICATION FOR DESIGN: RESHAPING THE TESTING PYRAMID

Experimental set-up

Front coated mirror at 45°

Effect of debond size on ΔT

Trends are similar regardless of debond size:

- High thermoelastic response at low frequencies
- Decreases exponentially with increased loading frequency
- Plateau at approx. 5 Hz

🖌 University of

Specimens with larger debonds

- Higher thermoelastic response
- Unable to transfer longitudinal stress at the tips/edges of the debond
- ΔT at 30 mm >20mm > 10mm

Specimens loaded at higher amplitude give higher thermoelastic responses

Trends are similar regardless of loading amplitude:

- High thermoelastic response at the start
- Decreases with increased loading frequencies
- Plateau at approx. 5 Hz
- Increase in thermoelastic response after 6 Hz

To observe the damaged region at the interface through the face-sheets, heat conduction from the sub-surface at low loading frequencies is required

Diah

$\Delta \epsilon$: DIC and FEA comparison

To determine ΔE from the FE model, both max. and min. loading cases were modelled

• For 10 mm debonded specimen case

Maximum load : -1000 N

Minimum load : -100 N

 $\Delta \varepsilon = \varepsilon_{max.\,load} - \varepsilon_{min.load}$

- FE corresponds well with DIC
- Clear discrepancy between FE and experimental strains around 2x/L = 0.55,
 - Localised stress concentrations around the loading roller
 - Boundary conditions at the loading roller region were not perfectly modelled
 - Light reflection on the mirror

Investigation of face sheet/core interface

Thermoelastic Stress analysis (TSA)

Obtain thermoelastic response at the damaged region at different frequencies

 $\frac{\Delta T}{T_0} = \frac{(\alpha_1 \Delta \sigma_1 + \alpha_2 \Delta \sigma_2)}{\rho C_p}$

Digital Image correlation (DIC)

Obtain **surface ply** thermoelastic response at 1.1 Hz

$$\frac{\Delta T_{surfaceply}}{T_0} = -\frac{e}{\rho C_p} \begin{bmatrix} \alpha_1 & \alpha_2 & 0 \end{bmatrix} \begin{bmatrix} \frac{E_1}{1 - \nu_{12}\nu_{21}} & \frac{\nu_{21}E_1}{1 - \nu_{12}\nu_{21}} & 0\\ \frac{\nu_{21}E_1}{1 - \nu_{12}\nu_{21}} & \frac{E_2}{1 - \nu_{12}\nu_{21}} & 0\\ 0 & 0 & G_{12} \end{bmatrix} \begin{bmatrix} T_e \end{bmatrix} \begin{bmatrix} \Delta \varepsilon_x \\ \Delta \varepsilon_y \\ \Delta \varepsilon_{xy} \end{bmatrix}$$

КК

13

CERTIFICATION

TESTING PYRAMID

FOR DESIGN:

.1 Hz

Data Fusion

Research Council

Fused data($\Delta T/T_0$ at 1.1Hz - Surface $\Delta T/T_0$)

Does this represent the thermoelastic response at the interface ?

Summary and Future work

- Interface debonded was observed through the face sheets using thermoelastic stress analysis, when cyclically loaded at low frequency.
- DIC and FE surface ply strains were closely matched at the debonded region
- A data fusion technique was developed so that the DIC surface ply thermoelastic response could be subtracted from the TSA thermoelastic responses over a range of loading frequency:
 - Thermoelastic model development to understand better the heat transfer effects
 - Identify the source of thermoelastic response in the fused data and relate ΔT to the stress intensity factor at the interface crack tip
- Monitor damage progression and characterize the internal fracture behaviour through the thin face sheets of sandwich structures using DIC, TSA and FE analysis.

Engineering and Physical Sciences Research Council

CERTIFICATION FOR DESIGN: RESHAPING THE TESTING PYRAMID

The Alan Turing Institute

Thank you for your attention. Any questions?

emily.leung@bristol.ac.uk

DIC processing information

		Analysis Parameters	Stereo DIC	
Hardware	Stereo DIC	DIC software	MatchID	
Cameras	Flir Blackfly S USB3	Subset, step size (pixel)	49,20	
Sensor and digitization	12-bits, 2448 X 2050		,	
(pixels)		Interpolation	Local Bicubic	
Lens	Tokina atx-I 100mm F2.8		Splines	
	FF MACRO PLUS	Shape functions	Affine	
Imaging distance (m)	~ 1.06	correlation criterion	ZNSSD	
Lighting	Dracast LED500 Pro Series	Prefiltering	Gaussian	
	Bi-Color LED Panel Light	Strain Window	19	
Pixel resolution	~ 1 pixel = 0.04 mm	VSG (pixel)	409	
		Strain Interpolation	Q4	

Strain Tensor

Log. Euler-Almansi

DIC processing information

System Performance		
Displacement noise floor (mm)		
u	$pprox 3.50 imes 10^{-4}$	
v	$pprox$ 4.67 $ imes$ 10 $^{-4}$	
w	$pprox 2.90 imes 10^{-3}$	
strain noise floor (%)		
Ехх	$pprox$ 8.66 $ imes$ 10 $^{-4}$	
εγγ	pprox 9.69 $ imes$ 10 ⁻⁴	
Exy	pprox 4.91 $ imes$ 10 ⁻⁴	

19

Reflectivity study of a front coated mirror

- A temperature controlled black body (IR-2106 from Infrared Systems Development Corporation) was used to generate a temperature target.
- A Telops FAST M3k infra-red camera (50 mm lenses) was set-up so that in the first set of the tests the camera viewed the black body through an aluminium front coated mirror (ME8S-G01 from THORLABS) and in the 2nd set of tests the camera viewed the black body directly.
- The temperature of the black body was adjusted and once stable the measurements were taken again.

Reflectivity study of a front coated mirror

CERTIFICATION

ESTING PYRAMID

FOR DESIGN:

The deviation of the slope of the curve from 1 (red line) indicated the attenuation effect of the mirror.

- Small attenuation
- The emissivity of the black body = 0.96 ± 0.02
- The average reflectivity of the mirror is about 0.994 ± 0.004 ≈ 1
- Correction factor is not required

Engineering and Physical Sciences

Research Council

21

Validate the DIC data captured using mirror

FE modeling details

- A quadrant of the specimen is modeled using the commercial FE package Abaqus/CAE 2018.
- Element types:
 - C3D20-Twenty-node brick element (face sheet and core)
 - Approximate global size at the face sheet and core: 3 mm and 1.5 mm (debonded, supported and indented regions)
 - R3D4- 3D Rigid element (Indenter and support)
 - Approximate global size: 1.5 mm
- Total number of nodes: 124936
- Total number of elements: 27025

23

