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3

Ruiz-Iglesias R., Ólafsson G., Thomsen OT., Dulieu-Barton JM. 
Identification of Subsurface Damage in Multidirectional Composite Laminates Using Full-Field Imaging.
SEM 2022: Thermomechanics & Infrared Imaging, Inverse Problem Methodologies and Mechanics of Additive & Advanced 
Manufactured Materials, Volume 6. 2022. pp. 39–42. Available at: DOI:10.1007/978-3-031-17475-9_6

PREVIOUS WORK

Analysis of the subsurface ΔT/T0 of CFRP [0,90]3S using 
the  DIC surface ply model 

CFRP IM7/8552 [90,0]3S & [0,90]3S



• Exploit the non-adiabatic thermoelastic response to detect surface and subsurface damage in laminated composites.

• Damage quantification using TSA of CFRP [0,90]3S, [90,0]3S, [0,45,-45,0,0,0]S and [0,0,0,45,-45,0]S configurations.

• Compare TSA damage quantification with the stiffness degradation at different damage levels (obtained with DIC).

• Work In Progress: Applying all the knowledge to quantify damage in real structures (e.g C-Spar)

PROJECT AIMS AND OBJECTIVES
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AIM & OBJECTIVES Novel full-field damage parametrization methodology using TSA
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PREVIOUS WORK
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SCIENTIFIC BACKGROUND
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Stress variation (Δσ) is required to obtain the thermoelastic response of a material:

ΔT (θ, Material properties, thickness…)

ΔT (θ, Material properties, thickness…)

ΔT (θ, Material properties, thickness…)

ΔT (…)

ΔT (…)

Ply 1

Ply 2

Ply 3

Ply n

Ply n+1

We are looking for HEAT TRANSFER to obtain SUBSURFACE INFO!

Simplified for orthotropic composite lamina (as α6 = 0)

Cross-section of multi-directional symmetric laminate

y

 

  

    

T0 ~ Mean temperature
𝜌 ~ Density
Cp ~ Specific heat capacity
𝛼1 and 𝛼2~ Thermal expansion coefficients in 1,2
𝛥𝜎1 and 𝛥𝜎2 ~ Stress variation in 1,2
[Q]1,2 ~ Stiffness matrix
[T] ~ Transformation matrix
[𝛥𝜀𝑥𝑦] ~ Strain variation in x,y
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CFRP IM7/8552 → HEAT TRANSFER OCCURING AT LOWER FREQUENCIES [1,2] 

Frequency Range

Example

Undamaged 
CFRP IM7/8552 [0,90]3S

GFRP RP-528: Adiabatic for all the layups (Not subsurface contribution) [1]

Subsurface Features (e.g. Damage)

Thermoelastic Stress Analysis on…



HOW IS DAMAGE QUANTIFIED?
A thermoelastic theory was defined in [3] for anisotropic materials and a damage parameter was defined using TSA

• It was developed based in the law of conservation of mass, momentum and energy.

• It relates the density, the internal energy per unit mass and the heat absorbed per unit mass for damaged and undamaged materials.

• Experiments were carried out on GFRP [0,90,0,90,0]S at a loading frequency of 10.1 Hz

[3] Zhang D, Sandor B (1990) A thermoelasticity theory for damage in anisotropic materials. Fatigue Fract Eng Mater Struct 13:497–509

𝛥𝑇 = −
𝑇0
𝜌𝐶𝑝

∙ 𝛼𝑥𝜎𝑥 + 𝛼𝑦𝜎𝑦
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NOVELTY OF THIS RESEARCH
Damage parameter

In pure tension: αxσx + αyσy

• Damage parametrisation carried out at low frequencies

• Full-field damage parametrisation

• Does the DTSA gives better a better quantification of actual damage?

Localised ROIs

Subsurface

* Undamaged: D=0
* Damaged: D ≠ 0i.e. the laminate stress

𝐷𝑌𝑀 =
𝐸𝑈𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 𝐸𝐷𝑎𝑚𝑎𝑔𝑒𝑑

𝐸𝑈𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝐷𝑇𝑆𝐴 = 1 − 𝐾𝑈𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 ∙ 𝛥𝜎 ∙
𝛥𝑇

𝑇0

−1



EXPERIMENTAL PLAN – MATERIAL (CFRP IM7/8552)
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Coupon Preparation

Tension mode → uniform strain state through the laminate thickness

Configuration Loading scenario FPFTsai-Wu (MPa) Ply failing Failure Mode Applied cyclic Stress (MPa) UTSLaRC03 (MPa)

[90,0]3S & [0,90]3S Tension Loading 542.60 90° Matrix failure 162.66 ± 141.33 1245.63

[0,45,-45,0,0,0]S & [0,0,0,45,-45,0]S Tension Loading 914.87 ±45° Shear 123.46 ± 111.11 1548.42

- Different plies breaking and different failure mechanisms
- Low cyclic stress must be applied



EXPERIMENTAL PLAN
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Load Ramp

Cyclic Loading

Induce damage progressively (in tension)

Observe the plies condition (Inspection)

WE ARE USING TSA AND DIC

…Why DIC?

To obtain DYM



EXPERIMENTAL ARRANGEMENTS
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SAMPLE

DIC 
CAMERAS

TSA 
CAMERA

LIGHTS

HYDRAULICS
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Damage Quantification: Multidirectional laminates
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Damage Quantification: Multidirectional laminates
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TSA Damage Quantification: All the laminates
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CONCLUSIONS OF THE RESEARCH
• Full-Field damage parametrization using TSA at low frequencies provides information about both surface and subsurface

• Compared with the stiffness degradation parametrisation, DTSA provides more information about the laminate's status

1. [90,0]3S wasn’t more damaged than [0,90]3S but it exhibited a higher DTSA

2. [0,45,-45,0,0,0]S wasn’t more damaged than [0,0,0,45,-45,0]S but it exhibited a higher DTSA

TSA provides a better measure of a reduction in structural performance when the damage is close to the surface

FUTURE WORK
• WIP: Damage parametrization of a real structure: C-Spar

• Subject specimens to different stress states (e.g. bending) → Not only tension in real structures stress state



WIP: C-Spar // EXPERIMENTAL SETUP
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C-Spar in the test machine Speckled C-Spar Rafa calibrating the tests
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WIP: C-Spar // Inside the web Inspection

Wrinkles
High stress concentration areas

0

8 Shape: Buckling ∼ Bending

Same pattern found as the undamaged

Damage parametrisation

*More complex stress state



17 Contact email: rafael.ruiziglesias@bristol.ac.uk
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