

MULTIFUNCTIONAL PERFORMANCE OF TAILOR-MADE CARBON FIBRES An improved structural battery negative electrode

<u>Ruben Tavano</u>, Johanna Xu, Fang Liu, Leif E. Asp, Materials and Computational Mechanics, Chalmers University of Technology, Sweden

Claudia Creighton, Luke C. Henderson, Institute for Frontier Materials, Deakin University, Australia

Structural batteries

• Multifunctionality:

- o Energy storage
- Load carrying capabilities
- Layered composite structure:
 - Carbon fibre negative electrode
 - Glass fibre separator
 - Lithium-iron-phosphate (LFP) on aluminium positive electrode
 - Bi-continuous structural battery electrolyte (SBE)

Conventional and structural battery

Pouch-bag cells

Sealed cell

Infused and cured cell

Carbon fibres as negative electrodes

- Conventional batteries use graphite
- Carbon fibres are also made of carbon but with a different microstructure
- The microstructure is called turbostratic graphite
- Precursor and manufacturing process affect the microstructure
- Lithium ions are stored differently in different microstructures

Previous work

- Lithium insertion mechanism in commercial carbon fibres has ٠ been studied
- Presence of different heteroatoms has been determined ٠
- Effect of microstructure has been identified •

Tensile Strength

3.5

Tensile Strength

3,890

10th cycle capacity

3.0

3.885

▲ 10th cycle capacity

4.0

c)

Void content (%)

3.895

d-spacing (Å)

4.5

3.900

Fredi et al., "Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes", Multifunctional Materials, 2018 Johansen M et al., "Mapping nitrogen heteroatoms in carbon fibres using atom probe tomography and photoelectron spectroscopy", Carbon, 2021 Xu et al., "Effect of tension during stabilization on carbon fiber multifunctionality for structural battery composites", Carbon, 2023

Carbon fibres manufacturing

- Historically, the focus has been on mechanical properties
- This work is a collaboration between Chalmers University of Technology and Deakin University:
 - Carbon fibres were manufactured at Carbon Nexus on a state-of-the-art research line from a 24k tow of polyacrylonitrile (PAN) precursor
 - Different process parameters were used to produce 3 different types of fibres
 - The focus was on making carbon fibres with an optimal microstructure to be used in structural batteries

Details about manufacturing

• Different temperature profiles for the LT (3 zones) and HT (2 zones) carbonization steps:

Trial	LT-furnace zone 1 (°C)	LT-furnace zone 2 (°C)	LT-furnace zone 3 (°C)	HT-furnace zone 1 (°C)	HT-furnace zone 2 (°C)
Trial 1	284	450	600	1000	1300
Trial 2	350	550	700	1100	1400
Trial 3	450	650	800	1200	1500

Manufacturing process

Physical and mechanical characterization

- Density measurements
- Diameter
 measurements
- Surface area
 measurements
- Conductivity
 measurements
- Single fibre tensile tests

Electrochemical characterization

Characterization results (1)

Characterization results (1)

· · · · · · · · · ·

IMS65

T800

Yang et al., "Effect of Sizing Agents on Surface Properties of Carbon Fibers and Interfacial Adhesion of Carbon Fiber/Bismaleimide Composites", ACS Omega, 2021

0,5

Trial 1 FC Trial 2 FC Trial 3 FC T300

Type of fibre (-)

Characterization results (1)

Characterization results (2)

• Previous study has shown:

• Similar results are expected also for these carbon fibres based on preliminary results (cycling of the half-cells is still not finished)

Summary

Electrochemical characterization

Tailor-made carbon fibres

Further analyses

- Microstructure determination:
 - SAXS/WAXS
 - HR-TEM
- Low-temperature extracted CFs characterization

Physical and mechanical characterization

CHALMERS

Further optimizations

16

Aknowledgements

- Co-autors:
 - o Prof. Leif E. Asp
 - o Dr. Johanna Xu
 - Ass. Prof. Fang Liu
 - Prof. Luke C. Henderson
 - o Dr. Claudia Creighton
- Colleagues from Deakin University:
 - o Mr. Ben Newman
 - o Mr. Piers Coia
 - o Ms. Bhagya Dharmasiri
 - Mr. Žan Simon
 - o Carbon Nexus' staff
- Funding institution:
 - Office of Naval Research (ONR), award number N62909-22-1-2037

cience & Techn

CHALMERS UNIVERSITY OF TECHNOLOGY