

On the Meso-structure Spatial Variability

Characterizing and Geometric Modelling of Textile-Based Composite

via Volume Imaging

Bin Yang^{1,2}, Jihui Wang², Philippe Causse³,

Cédric Béguin¹ & François Trochu¹

Department of Mechanical Engineering, Polytechnique Montréal
 School of Material Science and Engineering, Wuhan University of Technology
 Department of System Engineering, École de Technologie Supérieure

August 2, 2023

Digital Material Twin (DMT) - Virtual Lab

DMT = *Collection of actual physics-based models reflecting the exact structure of the physical part and operating conditions.*

- **detailed and accurate** geometrical modelling and meshing
- automatic tools to evaluate **quality**
- robust numerical analysis
- **multiscale** analysis
- real-time data from sensors in its physical implementation

Conclusion

Mesoscopic modelling technique

Geometrical simplification:

- General-purpose CAD software
- TexGen ^[1], etc.

Mechanical prediction:

- WiseTex (minimum energy) ^[2]
- beam elements / digital element chain
- et cetera...

Image-based modelling:

- Commercial: VG studio, Avizo ...
- Open source: ImageJ, Scikit-image ...
- In-house code

Objective

Develop a geometry modeling algorithm incorporating stochastic geometrical analysis and considering the local variation of materials.

□ Morphological representation of **fiber tow**

- Tow representation fibrous reinforcement
- Statistical analysis of geometrical features

Geometrical modeling and meshing of **fibrous preform**

- 3D reconstruction fabric
- Conformal and non-conformal meshing

Outline

Fiber tow representation

3D preform reconstruction

Conclusion

12 mm

Conclusion

Fibrous reinforcements investigated

Warp

8 dry circular plies Diameter : 25.4 mm Plies with the same orientation

15 mm

Segmentation

Raw data

Point cloud

- Size: 12.25 mm × 15.55 mm × 5.63 mm
- Fiber volume fraction: 57 %

Semi-automated workflow:

Manual segmentation on key slices

Outline

Experimental method

- Tow surface
- Tow trajectory
- Accuracy control

3D preform reconstruction

Conclusion

Parametric representation of tubular tow surface

(*s*, *t*): normalized geodesic distance in **radial** and **axial** direction

Tow tubular surface

 $\widehat{\Gamma}(s,t_i) = (X(s,t),Y(s,t),Z(s,t))$

Reduced to 2 dimensions

Extraction of tow trajectory

Trajectory $\gamma(t) = (x(t), y(t), z(t))$

1D parametric Kriging:

 $\gamma(t) = a(t) + W(t,\sigma^2)$

- *t*: parameter
- σ^2 : nugget effect

Cross-section identification

1. Parametric equation of tow surface:

$$\begin{cases} x(s_i, t) &= k_1(s_i)^T \cdot S^{-1} \cdot P_x \cdot T^{-1} \cdot k_2(t) \\ y(s_i, t) &= k_1(s_i)^T \cdot S^{-1} \cdot P_y \cdot T^{-1} \cdot k_2(t) \\ z(s_i, t) &= k_1(s_i)^T \cdot S^{-1} \cdot P_z \cdot T^{-1} \cdot k_2(t) \end{cases}$$

2. Implicit equation of the plane:

- Centroid $P = (x_c, y_c, z_c)$
- Normal vector $\overrightarrow{n} = (a,b,c)$

$$a(x - x_c) + b(y - y_c) + c(z - z_c) = 0$$

Intersection between an implicit object and a parametric object

Accelerated by Golden Section Search

Cross-section identification

Cross-section identification

Advantages

For each tow an analytical equation is provided:

- morphological operations
- reduce the data stored

Shrinkage induced by smoothing is avoided because:

- the estimator is constructed by minimizing variance ("<u>best</u>")
- estimated values are weighted <u>linear</u> combinations of knowns
- it searches the combination with zero mean estimation error ("<u>unbiased</u>")

Anisotropic smoothing:

• allows specifying different smoothing factors in axial and radial direction to attain anisotropic smoothing

Smoothing vs Shrinkage

Outline

Experimental method

Tow representation reinforcement

3D reconstruction reinforcement

- Fiber tow assembling
- Mesopores distribution

Conclusion

Labelled fiber tows

Flow and void formation simulation

in a dual scale structure:

- Fiber volume fraction (V_f)
- Fiber tow orientation

• Local variability and global conservation (V_f)

Conclusion

Spatial variability and vector information

In progressing: interpenetration between tows

Introduction

Conclusion

Conformal & non-conformal meshes

(dx = 0.088 mm, dy = 0.11 mm, dz = 0.055 mm)

Issue: too many elements \rightarrow simplification!

Outline

Experimental method

Tow representation reinforcement

3D reconstruction reinforcement

Conclusion

Conclusion

A basis for future numerical work based on high-fidelity models

One more thing ...

Composites: Part A 169 (2023) 107524

Performance evaluation of unidirectional molds used for measuring saturated transverse permeability of engineering textiles

Bin Yang ^{a, b}, Yixun Sun ^a, François Trochu ^a, Cédric Béguin ^a, Jihui Wang ^b, Philippe Causse ^{c,*}

^a Department of Mechanical Engineering, Research Center for High Performance Polymer and Composite Systems, Polytechnique Montréal, 2900 Boulevard Edouard Montpetit, Montréal, Québec H3T 1J4, Canada

Findings:

- support plate affects the measurement
- accuracy varies along material properties (thickness & anisotropy)
- potential underestimation of K_z

Discharge coefficient, an indicator for:

- evaluation of mold performance
- comparison of different molds
- K_z correction (from apparent to intrinsic)

Thank you!

Email: bin.yang@polymtl.ca
Blog: www.binyang.fun