Multiphysics Modelling of Structural Battery Composites, Half-cell Representation of a Coated Carbon Fibre Positive Electrode

<u>Carl Larsson^{1*}, Fredrik Larsson¹, Kenneth Runesson¹, Johanna Xu¹, Leif E. Asp¹</u> ¹Industrial and Materials Science, Chalmers University of Technology, 412 58 Göteborg, Sweden

ERS **CHAIN** UNIVERSITY OF TECHNOLOGY

What is a structural battery?

- Multifunctional material that can store electrical energy and transfer mechanical load simultaneously.
- Carbon fibre-based negative electrode acting as lithium host. -
- Two phase electrolyte, the solid phase transfer loads between carbon fibres and the liquid phase facilitates Li-ion exchange between electrodes.
- LiFePO, (LFP), coated carbon fibres as positive electrode using electrophoretic deposition.
- Li-insertion induced expansion of the coating material. -----

Half cell model of the fibrebased positive electrode

- Half cell representation, allowing assessment and characterization of the individual electrode against a known reference potential.
- Considering homogeneous properties of the underlying LFP coating structure.

 $-\boldsymbol{\sigma}\cdot\boldsymbol{\nabla} = \mathbf{0}$

 $F[c_{Li} - c_X] + d \cdot \nabla = 0$ Solved using finite element method. $\partial_t(c_i) + J_i \cdot \nabla = 0$

- Butler-Volmer kinetics. _
- Weak form implementation in COMSOL Multiphysics 6.1. -

- Predicts ionic migration between electrodes, boundary currents, as well as diffusion of Li in the coating material.
- Allows for prediction of internal stress state, caused by the lithium insertion induced swelling of the coating material.
- Two-way coupling between chemical potential and mechanical stresses, i.e. application of mechanical stresses causes voltage change, and vice versa.
- Material parameters such as diffusion coefficients and exchange current density can be calibrated from physical tests, improving the accuracy of the model.

Acknowlegdements

The project is funded by the USAF via the EOARD Award No. FA8655-21-1-7038, ONR, USA, Award No. N62909-22-1-2037, and the Swedish National Space Agency, project no. 2020-00256

References

- [1] Asp, L. E., Bouton, K., Carlstedt, D., Duan, S., Harnden, R., Johannisson, W., Johansen, M., Johansson, M. K. G., Lindbergh, G., Liu, F., Peuvot, K., Schneider, L. M., Xu, J., & Zenkert, D. (2021). A Structural Battery and its Multifunctional Performance. Advanced Energy and Sustainability Research, 2(3), 2000093.
 [2] Schneider, L. M., Ihrner, N., Zenkert, D., & Johansson, M. (2019). Bicontinuous Electrolytes via Thermally Initiated Polymerization for Structural Lithium Ion Batteries. ACS Applied Energy Materials, 2(6), 4362–4369.
 [3] Hagberg, J., Maples, H. A., Alvim, K. S. P., Xu, J., Johannisson, W., Bismarck, A., Zenkert, D., & Lindbergh, G. (2018). Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries.
- Composites Science and Technology, 162, 235–243.
- [4] Carlstedt, D., Runesson, K., Larsson, F., Xu, J., & Asp, L. E. (2020). Electro-chemo-mechanically coupled computational modelling of structural batteries. Multifunctional Materials, 3(4). [5] Carlstedt, D., Runesson, K., Larsson, F., Tu, V., Jänicke, R., & Asp, L. E. (2022). Computational modelling of structural batteries accounting for stress-assisted convection in the electrolyte. International Journal of Solids and Structures, 238.

