

Additive Manufacturing Of A Non-planar Multifunctional Sandwich Panel

J. Pierre¹, G. Chenier¹, M. Verville¹, J.-F. Chauvette¹, R. Farahani¹, N. Piccirelli² and D. Therriault¹

¹ Laboratory for Multiscale Mechanics (LM2)- Polytechnique Montréal, Canada

²Safran composite, Itteville, France

Abstract

Airplanes noise reduction is a significant challenge for the aerospace industry. Additive Manufacturing (AM) allows the fabrication of new costeffective structures that have complex shapes. In this work, we fabricated a multifunctional **non-planar** sandwich panel (SP) with **Fused Filament Fabrication (FFF)** technology using **High Temperature Reinforced Polymers** (HTRP) broadband sound absorption and load-bearing showing capabilities.

Specific objectives

- Fabrication of a broadband sound absorber SP using HR 1.
- Fabrication of a heated enclosure for HT non-planar FFF
- Additive manufacturing of a non-planar HTRP sandwich panel 3.

Leap engine (safran-group.com)

FFF 3D printer with heated enclosure (aon3d.com)

SP with Helmholtz resonators (HR) to reduce airplanes motor noise

Acoustic SP (Meng et al.)

Background and context

Poor curvature

approximation

Planar printing = poor curved surface approximation

One HR = narrow

broadband

absorption

sound

environment required for HTRP FFF

Heatd

Methodology

PLA proof of concept charaterization

Trapezoidal compact (TC) acoustic cell

Acoustic Tests

- Combination of 5 different HR inserted in the core of a SP
- 90% of absorption over \sim 500 Hz
- Absorption of acoustic cell \sim 30% higher than its honeycomb (HC) benchmark
- Acoustic SP $\sim 10\%$ stiffer than its benchmark HC

HTRP non-planar multifunctional

HTRP non-planar sandwich structure

Assessment of surface quality

 Non-planar AM increases stiffness (+25%) • Precision of NP = \pm 0,12 mm VS P = \pm 0,20 mm Engine fancase

 Precision of the upper surface = ± 0,28 mm • Less precision of the sides = ± 0,8 mm

Conclusion

Future work

- Absorption of acoustic structure above 90% over \sim 500 Hz broadband
- TC panel shows 10% higher stiffness than benchmark HC
- Non-planar beam 25% stiffer than planar beam
- High surface precision with non-planar FFF
- Testing acoustic and mechanical properties of a large panel
- Improving the precision of the printed parts via the recalibration of the FFF HTRP 6-axis robotic setup
- Setting a 2nd printhead for double material FFF

Acknowledgements

